Naval Research Laboratory

Washington, DC 20375-5320

-

AD-A278 7 IO
R .'IlHIliHlmllIlll’ﬂ"lHlls \3

NRL/MR/6707--94-7462

Theoretical Aspect of Low Pressure
Discharges in Simple Gases

WALLACE M. MANHEIMER

Senior Scientist Fundamental Plasma Processes

Plasma Physics Division
March 28, 1994 ‘ 7 ' 'q‘_ f‘:}
;‘, - i.% ﬁ; .
4-13232

HII\\Ililll|‘||\\\III\\\\I\llll\\\lll\lllll\ -

Approved for public release; distribution unlimited.




REPORT DOCUMENTATION PAGE Porm Approved
OMB No. 0704-0188
Memndonhvm lection of inf ion » od to age 1 hour per resp including the tme for reviewing instructions, sserching exwting data sources,
| gathering and irng the data ‘“ . ‘--\d C g the collection of inf ion. Send regarding this burden estimate or snvy other sapect of thee
collection of i m"‘* suggesti 9 this burden, to i Headquarters Services, Di tor ind Operstions and Reports, 1216 Jetterson
Davis Highway, Suite 1204, Arluuten. VA 22202-4302 and to the O"teo of Muw end Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20803,
1. AGENCY USE ONLY (Leave Sienk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 28, 1994 Interim
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Theoretical Aspect of Low Pressure Discharges in Simple Gases PE - 61153N

6. AUTHOR(S)

Wallace M. Manheimer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Rescarch Laboratory
Washington, DC 20375-5320 NRL/MR/6707-94-7462
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Office of Naval Research

800 North Quincy Street
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVANLABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Meximum 200 words)

Discharges processing is becoming more and more important in many industrics. This paper attempts to bring together, in
relatively compact form a basic derivation of the physics of processing discharges including collision theory, kinetic theory, simple
chemical reactions, fluid formulations and sheath physics.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Disct 132
Processing 16. PRICE CODE
Sheaths
17. SECURITY CLASSFFICATION 18. SECURITY CLASSFICATION  |19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED { UL
NSN 7640-01-280-6500 Standerd Form 208 Mev. 2-89)
Prescribed by ANS! Sed 239-18
i 208-102

’




10.
11.
12.

13.

INTRODUCTION . ... ittt ettt e et et ettt e 1
MEASUREMENTS ON PROCESSING TYPE DISCHARGES ................... 8
PARTICLE COLLISIONS IN PROCESSING DISCHARGES ................... 15
KINETIC THECRY FOR PARTICLES WITH NO INTERNAL STRUCTURE . ....... 23
KINETIC THEORY RATE EQUATIONS FORATOMS ...................... 30
HOMOGENEOUS, MOLECULARPLASMAS . .. ...... .. ... it 38
HOMOGENEOUS PLASMA IN ANELECTRICFIELD . ..................... 48
SCALING LAWS FOR BINARY COLLISIONAL PLASMAS .................. 56
FLUID EQUATIONS FOR PROCESSING PLASMAS ... ........... .00 58
QUASI-NEUTRALITY AND SHEATHSINPLASMAS ... ... ..... ... 66
INFINITE DC DISCHARGES IN CYLINDRICAL GEOMETRY ................ 74
ELECTRODE SHEATHS INDCDISCHARGES .............ccitiuiennnnns 83
RF DISCHARGES INPLANARGEOMETRY ............c.ciuuuunnnnnnnnns 90
ACKNOWLEDGEMENTS . ... .. ...ttt tiiitiineenrronnnneneens 101
REFERENCES ... .......0ititiiiieerretonnnnnnneeenonnneenannn 102
FIGURE CAPTIONS ... ... itiiiiiiiieniinnnnnnanssnennnnnnnnans 110

. Aconsaticn Fer i

Fets ot o

DPIS T a
Unarn: weod 3

-k [
JEL - PG

e et i + o+ o e e gt

R

Y e e e e

Cissmstmiior s
AL A

PR NE ) IR IR S SRR
T
it

A INELNCRRN

:
A
A
H ‘ L

o




-

THEORETICAL ASPECTS OF LOW PRESSURE
DISCHARGES IN SIMPLE GASES

1. Introduction

Low density discharges have been an important part of plasma

processing, which has grown into a tremendously important

. industrial tool over the last 20 years. Both the National Research
Councill and Naval Studies Board2 have recommended that plasma
processing be put on a firmer scientific footing, and point to several
areas where industrial processes are limited by the plasma itself.
Shohet3:4 points out that the markets and potential markets for
materials produced by plasma processing is in the hundreds of
billions of dollars. Also he quotes several industrial users as
needing a better understanding of the plasmas in their devices to
fully exploit the potential. Plasma processing occurs over a hug:
volume of parameter space and involves many disciplines. As Shohet
points out, no one person can summarize all of it now. This paper
attempts to set out the basic plasma physics of low density
discharges, which is a very important aspect of the overall field of
plasma processing.

Another reason for interest in the area regards its recent
history5. Figure (1.1), from Ref.(5) shows the number of elements on
a chip and the scale size for the design rules as a function of time.
The authors call the 25 year record of innovation unmatched in all
world history. As an illustration, the computer this is typed on
contains about ten million transistors, an amazing number of
manufactured items for an individual to own. By contrast, ten
million paper clips costs about as much as a house. Much of this
innovation resulted directly from plasma processing with low
density discharges. As the design rules get tighter, the
requirements on the low density processing plasma also become
more difficult to meet, and it becomes more and more important to
understand the plasma itself.

There are a large number of American textbooks in
plasma and discharge physics €.7.8.9,10,11,12,13,14, However these do
not completely cover the aspects of discharge physics most relevant
to plasma processing. The two that come closest to what is
presented here are two English translations of older Russian
texts!5,16 which are probably not very widely available here now.

. Furthermore there are several other books devoted to plasma
processing!7.18,19,20 and a very extensive one is.in preparation?!.
This paper hopes to complement these and also:to stake out its own

Manuscript approved February 14, 1994.




role as covering important aspects of the theory, along with
comparisons with experiment and simulations. It hopes to be an
educational resource as well as a review of recent literature.

With the current importance of plasma processing, there are
now many attempts at modeling the plasma both with fluid
simulations22,23,24,25,26,27,28,29  Monte-Carlo modeling of particle
streams in sheath fields30.31,32,33,34,35 and full particle
simulations36,37,38,39,40,41,42,43,44,45,46,47 There is less analytic
work, but nevertheless, analytic work is doable and
important48.49,50,51,52,53,54 |n fact analytic work and numerical
simulations nicely complement each other. Analytic work can derive
scaling laws, elucidate the basic physics, and generally see the
forest rather than the trees. As Art Buchwald put it, War is too
important to leave to the computers. Numerical modeling, of course
is the only way of solving the seemingly intractable problems
related to the low density discharges.

Now we will very briefly discuss some industrial plasma
processes using low density plasma processes, to see what direction
they drive the theory. We will start with integrated circuit
fabrication, described more fully in the cited books. Typically the
challenge is to etch a precise pattern into a substrate, often silicon
or silicon dioxide. Atop the wafer is a mask which has the pattern
in it. One would like to expose the covered wafer to something that
the cover is impervious to, but which etches the silicon. In the early
days of integrated circuit fabrication, the etch was usually done
chemically. However as characteristic sizes were reduced over the
years, chemical etching became less and less satisfactory. For one
thing, chemical etching is typically isotropic, so that the mask is
undercut by the etch. As tolerances became tighter, this became
unsatisfactory since one line etched into the silicon would run into
its neighbor. The solution for these narrower line widths, has been
to use a plasma etch. The plasma has two advantages, first it
produces the etch material in a dry environment, and secondly, the
etch is anisotropic, so the trench edge is nearly vertical. One great
advantage of the plasma, is that electron collisions produce not only
charged particles, but also free radicals. When they strike the
workpiece however, they react very strongly. These free radicals,
which do not exist long in liquids or high density gases, can be
readily produced and maintained in the plasma environment because
the electrons of the plasma have more than enough energy to
generate them. However the electrons, while energetic compared to




the background, have such low density that they do not appreciably
increase the energy content of the entire gas. Thus a plasma gives
rise to the possibility of high energy density chemistry at low gas
energy density.

Now let us consider the anisotropic nature of the etch55. The
workpiece is exposed not only to the neutral free radicals, but also
to the streaming ions which form the plasma sheath. The ions and
fast neutrals impinge perpendicular to the workpiece. Thus the
bottom of the trench will be struck by the ion flux, and the side
walls will not be. In Fig.(1.2) is shown a schematic of the features
of wet and plasma etching along with a microscope photograph of a
very deep trench produced by a plasma etch.

While the total process just described involves complicated
aspects of surface and gas phase chemistry, the plasma is important
also. Specifically we would like a plasma theory to be able to
predict the production of free radicals as well as the flux and energy
spectrum of fast ions and neutrals to the surface. At low density,
the gas chemistry depends greatly on the electron distribution
function; and in the cases where a fluid model for the electrons
apply, on their density and temperature. The flux and spectrum of
fast ions and neutrals to the workpiece depends crucially on how the
plasma sheath is set up. Different types of plasma set up different
types of sheaths, and the industrial process exploits this. For
instance a DC discharge has a cathode sheath with very little
flexibility, as we will see. While it is sometimes useful, one has
more control over the sheath of a planar RF plasma, and this is the
workhorse of low density plasma processing today. As the design
rules tighten, one would like still more control as well as lower
neutral density. This is forcing the plasma toward electron
cyclotron resonance, helicon, or induction reactors. A description of
these is still very much in the research phase, this paper
concentrates on the dc and rf plasma, where the theory is much
better established.

in addition to etching, plasmas are used for deposition also.
One of the most spectacular has turned out to be the deposition of
thin diamond filmgS€.57,58,59, Diamond has remarkable properties
regarding hardness, as well as thermal and electrical properties.
Until recently, they were available only through natural mining, or
high temperature, high pressure compression of carbon. In the last
ten years it has been discovered that diamond films could be




deposited on substrates by plasma chemical vapor deposition.
Typically the plasma are CH4-H2 or other mixtures. The plasma
density ranges from the very low to the very high, but low density
discharges are used at a number of institutions.

The actual deposition process is very complicated and does not
seem to be well understood at this point. If a layer of carbon is
deposited on a substrate, the energetically favored form is graphite,
not diamond. However since the particle stream impinging on the
substrate is quite energetic, there is sufficient energy flux to form
the less favorable diamond structure. Typically, a large fraction of
the deposited carbon is in graphite form, and a much smaller part of
the deposited carbon is in the diamond structure. The idea then is to
eat away the graphite as rapidly as it builds up, so that what is left
is a diamond film. The deposition rate is typically microns per hour.
This is done in two ways, first by heating up the substrate to keep it
less hospitable to graphite and more to diamond, and second to have
a flux of free radicals on the substrate. The flux of free radicals
also eats away at the graphite much faster than it does the diamond.

The plasma then seems to play the role of a source of free
radicals and as a source of energy to initially form the diamond
crystal. The free radicals come mostly from electron interactions
with the background gases. Thus what one needs from a theoretical
model is the electron density and temperature (or electron
distribution function if the electrons are not Maxwellian) and the
free radical production

Finally we will consider the case of Plasma immersed ion
implantation (P111)3.80, Often one has a metal, a tool for instance,
and one desires to implant guest ions up to a certain depth in the
metal, for surface modification. For instance nitrogen is often
implanted in steel to harden the surface, and/or to reduce the
surface friction. To implant the nitrogen to the necessary depth, it
must be driven into the metal at energies of typically 100 keV and
higher. At first one might think an ion accelerator would be
required. However this has disadvantages in that the ions all are
accelerated in one direction and the workpiece might not be planar.
An alternative would be to put the workpiece in a plasma and pulse
it with a negative voltage pulse. Then ions will be accelerated from
the plasma into the workpiece. As long as the object is large
compared to the plasma sheath, the ions will be accelerated
perpendicular to the surface. We would like a plasma theory to tell




us the ion dose in terms of the plasma and external circuit
parameters.

The theory we work out in this report is guided by what
appear to be the needs for the plasma processors just described. We
begin in Section 2 with a description experimental results on dc and
rf discharges. Sections 3-7 review collision and reaction processes
in processing discharges. While we emphasize low density
discharges here, where thermal equilibrium considerations can be
simply included we have occasionally done so, not only for
completeness sake, but also because a relevant reaction rate can
often be more easily be calculated by first calculating its inverse
and then using detailed balance. We assume that cross sections for
the appropriate processes are known and the theory we work out
will be in terms of these cross sections. Section 3 reviews the
basic physics of simple collisions. The next problem is the kinetic
theory of a gas of particles with no internal structure, but which
interact with each other via binary collisions. This is described in
section 4. There, there are relations between each collision process
and its inverse which have important implications for the
equilibrium theory. For the case of collisions of particles with no
internal structure, these relations are not difficult to see from the
basic collisional descriptions. The case of particles with internal
structure are described first for the case of atoms in Section 5. As
the particles have more and more complicated internal structure,
relations between the collision and its inverse become less and less
obvious. However these relations are still necessary in order for
equilibrium statistics to hold.

Section 6 discusses an infinite homogeneous molecular plasma.
This gets even more complicated because now there is chemistry as
well as excitations and ionizations. In fact one of the most
intimidating things about a processing plasma is the very large
number of potential reactions, and the necessity of sorting them out.
For instance Sommerer and Kushner and others enumerate a large
number of reactions for certain simple and more complicated
plasmasé! .62, We consider a fairly simple molecular plasma, but one
still of importance in processing discharges, the oxygen plasma.
However even this plasma has a tremendous amount of chemistry
potentially occurring. Possible components are O2, O, Oz+, O+, O
,02-, O3, O3+, O3-, electronically excited oxygen, electrons, and
possibly clusters. The number possible of reaction channels is huge,
and one must keep only the most important. While the chemistry is




very important, it cannot be the whoie story of the plasma. As we
will see, for the oxygen plasma, there are components which have no
reasonable equilibrium in a low density plasma if cne considers
chemistry alone. For instance at low electron density,
recombination is unimportant. Also atomic oxygen can be produced
by electron impact dissociation, but since three body reactions are
unimportant at low density, it cannot recombine. Thus there are no
sinks for electrons or atomic oxygen, and no sources for molecular
oxygen. Thus at low density, chemistry alone cannot describe the
equilibrium.

Section 7 discusses the solution for the distribution function
in a homogeneous plasma in an electric field. The full processing
plasma, which is described by the Viasov equation for all species
coupled to Maxwell's equations for the fields is much too
complicated to solve, or even simulate. However for plasmas
dominated by binary collisions, there are scaling laws, which in
some cases can relate solutions to one another. This is described in
Section 8.

Solving the Viasov equation involves following the time
dependence a function of 6 variables, three velocity dimensions and
three position dimensions. A fluid formulation however has only
three spatial dimensions, so if there is any justification for it, it is
greatly simpler than a Vlasov formulation. In a multi-dimensional
fluid formulation rather than a zero or one dimensional Viasov
formulation, one is essentially trading thermal realism for
geometric realism. In processing plasmas where complicated
geometry plays an important role, laminaré3.64.65, and turbulent8é
fluid simulations play an important role.  The fluid formulation for
the charged species in the presence of the neutrals is derived in
Section 9. Usually, even for low density plasmas, the fluid equation
gives a reasonable approximation for the bulk, although the
chemistry often depends on just what the tail of the electron
distribution function is.

Typically most of the plasma volume is quasi-neutral so the
electron and ion densities are equal. However near walls, the quasi-
neutrality approximation breaks down. This breakdown manifests
itself in the steady state quasi-neutral fluid solution by the
presence of a singularity67.68,69,70,71  This singularity signals that
the quasi-neutral central part must transition into a non-neutral
sheath. This can be a very complicated mathematical problem,




although in the cases discussed here, it turns out to be not too
difficult. Typically the sheath width is very smail compared to the
other lengths in the plasma, including the mean free path. Thus a
fluid model is not necessarily valid for the sheath. However there
are often other simplifications, for instance the neglect of
collisions or a one dimensional structure. This is discussed in
Section 10.

Sections 11 discusses the bulk plasma in a DC cylindrical
discharge. it shows how the quasi-neutral part couples to the
sheath and how mass, momentum and energy are coupled from the
external circuit to the plasma. As an example, let us consider again
the oxygen plasma in a cylindrical configuration. We pointed out
earlier that there was no steady state determined by chemistry
alone because there were only sources for electrons and atomic
oxygen, but only sinks for molecular oxygen. In the finite cylindrical
system however there is a possible equilibrium. The electrons,
oxygen atomic and molecular ions, and oxygen atoms are produced in
the bulk and diffuse to the wall. The molecules are lost in the bulk.
However at the wall the electrons, oxygen atomic and molecular
ions, and oxygen atoms recombine to form molecular oxygen, since
the wall now acts as the third body for three body collisions. This
molecular oxygen then diffuses from the wall back in to the bulk,
and allows the formation of a low density steady state. Thus in the
oxygen plasma, the low density equilibrium is an interplay between
the chemistry, and what might .be called the conventional plasma
physics. Neither alone is sufficient to form the equilibrium.

Sections 12 discusses the cathode sheath of a DC plasma. This
is one of the oldest observations in all plasma physics and still one
of the most complicated. Strictly speaking, the sheath is not fluid
like, and it is inherently collisional. We discuss both simple and
more complicated models of the sheath and compare with
experiments. Section 13 discusses both the sheath and bulk of an rf
plasma an compares with experiments. To summarize, we will see
that there is a good bit of theory that can be done, and that it does
not do too bad a job in explaining many of the features observed in
low density discharges in simple gases.




2. Measurements on Processing Type Discharges

In this section we will discuss measurements of plasmas of
the type used in processing discharges. These are dc and rf
discharges. Particularly for dc discharges, basic experiments,
regarding both the bulk and sheath regions go back nearly a century
and work is still proceeding. To illustrate this, we will cite some
early results taken from the oldest textbooks found in the NRL
library. The work on rf discharges seems to be much more recent.
Most studies of the sheath region in rf plasmas seem to date from
about the late sixties.

In a dc plasma which is very weakly ionized, the parameters of
the plasma often depend on the electric field E divided by the neutral
density N. A large amount of data for this sort of plasma has been
summarized by J. Dutton’2 . This data is usually called swarm
relations, because it is basically data regarding a swarm of
electrons in a gas acted on by an electric field E. The electron
density is assumed to be so small compared to the neutral density,
that any effect proportional to the square of the electron density
(for instance electron electron collisions, electron ion collisions, or
collisions of electrons with neutrals excited by electrons) is
assumed negligibly small. Calculations of the electron distribution
function are then calculations using the Boltzman equation, but the
equation is linear in electron density. Typically a background gas
temperature is assumed and the electron distribution function is
then calculated accounting for the various elastic and inelastic
collision processes. We will show a simple example of such a
calculation later on. Furthermore, the average properties of the
electron swarm (for instance drift velocity, temperature, ionization
rate, excitation rate, etc) can often be measured and compared with
the theoretical calculations.

One example is for oxygen (O2), and the data is taken73. Shown
in Fig.(2.1a) are plots of the momentum and exchange collision
frequencies divided by neutral number density as a function of
characteristic electron energy (ie electron temperature). Through
the graphs are empirical straight lines covering the temperature
range characteristic of processing oxygen plasmas, about 0.5 to 5
eV. Although the data does not exactly fit a straight line, each one
fits to within about a factor of two over the entire range of interest
to processing plasmas, that is energies from about 0.5 to about 5 eV.
The slopes of the line for momentum collision frequency is 0.5 and




that for energy exchange is 2.6. Analogous data is given for
Nitrogen’4. The slopes then become 0.7 and 3.4.  Since the slope of
vp (which is the collision cross section times the thermal velocity
times the background gas density) versus energy is 0.5 for oxygen,
the collision cross section is nearly constant as a functon of
energy. For nitrogen, the cross section does have a weak dependence
on energy, op =< E0-2.

Shown in Fig.(2.1b) are plots of electron drift velocity and
electron temperature for oxygen as a function of electric fieid
divided by neutral number density. (Hake and Phelps call it average
energy, but from the numerical factors used in their definition, it is
in fact the temperature.) Again, straight lines are drawn through
the data and the slopes are respectively 0.7 and 0.5. For nitrogen, a
similar analysis of the data gives slopes of 0.8 and 0.4. Later on, we
will develop a theoretical model for the relation between these
slopes. For the case of oxygen, the drift velocity versus E/N fits the
power law quite well. The agreement is not quite as good for the
temperature, and other power law indices between about 0.35 and
0.55 could also give reasonable agreement. The index we chose. 0.5
also gives reasonable agreement to the cathcde fal! theory we will
develop later on.

It is important to realize that the rapid increase of energy
exchange collision frequency in Fig 2.1 cannot be sustained for much
higher energies than the 5 eV shown. In fact for most simple gases,
at energies corresponding to the electron temperatures of
processing plasma, the electron momentum exchange collision
frequency remains the collision process with the largest cross
section. Shown in Fig. 2.2 are the momentum exchange and inelastic
cross sections for Oz, N2, and O as a function of energy.”s Of
particular interest is the peak in the nitrogen elastic and inelastic
collision frequency between about 2 and 4 electron volts. This is
the excitation of vibrational states of nitrogen at these energies. It
is also important to realize that this peak depends on the vibrationai
temperature of the neutral gas. As the neutral gas heats, energetic
vibrationally excited molecules can give energy back to the
electrons in a collision and this peak decreases in amplitude. At
energies below 100 eV, the momentum exchange cross section is
dominant by at least an order of magnitude at nearly all electron
energies. Of course at very high electron energy, momentum
exchange becomes less important compared to other processes.




We now turn to the classical self sustaining gas discharge. It
has a cathode at one end, an anode at the other end, and is surrounded
by a cylindrical glass tube. The characteristics of the discharge
vary both as a function of distance along the tube z, radius r, and as
a function of the Voltage, or what is generally more convenient, the
current between the electrodes. Note that the current and Voltage
cannot be separately specified, they are related by whatever the
Ohm's law is for the plasma.

The typical Voltage versus current curve for a dc discharge is
shown in Fig.(2.3) taken from Cohen7€. This is for air at a pressure
of 1 Torr with metal electrodes of 100 cm2 and separated by 30 cm.
At very low current, the Voltage increases very rapidly with current
and then levels off. This is the Townsend discharge which is usually
not self sustaining. That is it relies on electron emission, typically
photo-emission from the cathode. The current densities are so
small that vacuum fields are basically unperturbed by the plasma.
At a certain current, the discharge is self sustaining and over a
large range of currents, the Voltage is constant. This is the normal
glow, at which the vacuum fields are strongly perturbed by the
plasma. As the current increases, there is second critical current at
which the Voltage again begins to increase with current. This is the
abnormal glow. In both glow modes, the current near the cathode is
sustained by ions streaming into the cathode and being absorbed
there. The current is limited by the very small currents ions can
carry because of their large mass and low velocity. Within the bulk
of the plasma however, the current is always carried by electrons.
The question of how ion current near the cathode transitions to
electron current in the positive column is very interesting and will
be discussed later on. Finally at higher current still, the Voltage
decreases again with current and one is in the arc mode. Here one
relies on electron emission from the cathode caused by local heating
of cathode spots by the discharge itself. We concern ourselves here
with the normal and abnormal glow regimes.

We now turn to the axial structure of the plasma. A
photograph of such a discharge, along with plots of various
parameters, taken from L. Loeb?7,is shown in Fig.(2.4). Actually an
earlier photograph of the same sort of thing was shown in A. von
Engel and M. Steenbeck?8. Most of the length of the discharge
appears to be a uniform plasma which the authors call the positive
column. It is characterized by a uniform electric field and a uniform

10




luminosity. The current is virtually entirely electron current.
Earlier researchers investigated whether the positive column had
any inherent length like the cathode and anode sheath regions. Both
Brown and Chapman quote Hittorf in an experiment attempting to
measure this length. He lengthened a tube until it ran back and forth
across his lab. At this stage, a frightened cat pursued by a pack of
dogs came through the window. “Until an unfortunate accident
terminated my experiment” Hittorf wrote, “the positive column
appeared to extend without limit.”

Studies of the positive column have been made by Bickerton
and von Engel’. They show that for an unmagnetized helium plasma,
the electron temperature depends on Rp where R is the radius of the
discharge and p is the background pressure in torr. Shown in
Fig.(2.5a) is some of their data. The curves shown are various
theoretical cu res which will be discussed in a later section. The
presence of a magnetic field parallel to the axis has the effect of
reducing the electron temperature. Fig.(2.5b) also shows the
temperature as a function pressure for a 1.8 cm radius tube for a
magnetic field of 440 Gauss. The curve shown is a theoretical curve
to be introduced later on. Actually the positive column is not as
simple as this data indicates. Often the positive column is striated,
and this is discussed both by Loeb, and von Engel and Steenbeck.
Furthermore, for magnetic fields above a critical value, the positive
column becomes unstable80. This instability was described
experimentally and theoretically by Kadomtsev and Nedospasov.

Near the anode there is a sheath region which Fig.(2.4) shows
as having increasing potential as one approaches the anode. Actually
this is the wrong polarity. Chapman (Fig(4.2)) shows a graph similar
to this with the increasing potential. However in his more detailed
discussion of the anode sheath, he shows that the potential is
decreasing toward the anode (Fig(4.4)). That is the plasma potential
is the highest potential, even higher than the anode potential. The
electron current to the anode is very small compared to the current
from a one sided Maxwellian distribution at the electron density in
the positive column. Thus there must be a retarding potential which
repels the electrons from the anode. It lowers the electron density
until the current from the one sided Maxwellian is equal to the
actual electron current. The need to repel the electrons lea .s to the
plasma to be at a higher potential than even the anode.
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The cathode sheath is much more complicated still. There is
both a much larger potential drop and a more complex structure. In
fact, unless the positive column has very long length, almost all of
the potential drop is across the cathode sheath region, called the
cathode fall. Near the cathode, there is a positive space charge, and
most of the current to the cathode is ion current. Typically the
cathode is not a strong electron emitter, so that most of the current
is ion current. In fact, for each energetic ion impinging on the
cathode, y electrons are back emitted. For cathode materials and

energies characteristic of glow discharges, typically 0.1<y<0.3.

Earlier researchers carefully investigated the structure and
scaling of the cathode fall region. Both Loeb and Darrow8! point
out that the width of the cathode fall region, dn, is inversely
proportional to background gas number density N. Furthermore, with
some variation, the current scales basically as N2. One of the most
striking scalings to come from this work is the constancy of Voltage
over the normal glow regime. As Darrow puts it(p406), "It is one of
the dogmas of modern physics that the ordinary cathode fall Vp is
determined entirely by the nature of the electrode and the nature of
the gas. As some express it, Vp is a "material constant” whereas |
and dp are not for they vary with the pressure of the gas". For
typical gases and electrode materials, this Voltage Vn varies from
about 150 to 300 Volts. Darrow, Loeb and von Engel all tabulate Vy's
for various gases and electrode materials.

Actually, what happens in the normal glow regime is that the
current density is constant as a function of radius, but the total
current increases depending on how much of the cathode surface is
covered with the discharge. Fig (2.6a), from Darrow shows the
current as a function of the illuminated area of the cathode, showing
a linear relation. When the entire cathode is covered by plasma, one
then enters the abnormal glow regime where the current then
increases with Voltage.

Within the cathode fall, the electric field, to a good
approximation is a linear function of distance from the cathode
surface. Fig.(2.6b), taken from Darrow shows the linear variation of
the electric field as a function of distance. Experiments in planar8?2
hollow83.84 cathodes also show a basic linear variation of electric
field with distance. We will see that there are good and reasonably
simple analytical models for all of these features.
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We now turn to rf discharges. Also we consider only the rf
discharges driven at 13.5 MHz so as to reduce the size of the
parameter space. This frequency is the principle frequency used in
industrial plasma processing. As far as physics regime is
concerned, it is much less than the electron plasma frequency and
much greater than the ion plasma frequency. Thus the electrons
respond to the instantaneous fields (both the rf fields and any
induced dc fields), and the ions respond to the average ‘ields which
they see. Work on rf discharges, both as fundamental studies and for
plasma processing seems to go back to the late sixties and early
seventies85.86,87,88,89,90,91,92,93,94  ajthough some work goes as far
back as the mid fifties®5. V. Godyak has published some of the
seminal work in the area%6,97.98,99,100,101

Radio frequency discharges are like dc discharges in some
ways, and are very different in other ways. Typically an rf current
is driven between two parallel plates. As in the dc case, there is a
central plasma which is reasonably uniform, and at each electrode,
there is a sheath. These sheaths are characterized by both dc and rf
electric fields. The dc fields accelerate the ions into the electrode,
as in the dc discharge. However unlike the dc case, these fields
accelerate the ions into both electrodes. Furthermore, unlike the dc
case, the electrodes do not necessarily have to be conductors. That
is if the electrodes are insulators, the fields can be capacitatively
coupled in a rf discharge (in other words, near the electrodes, there
can be displacement current instead of conduction current). The fact
that the electrodes can be insulators is significant industrially,
since the workpiece is not always a metal. Secondly, as we have
seen, the Voitage for the dc cathode sheath has to be above a
minimum value. For the case of the rf sheath, there is no such
minimum.

Godyak enumerates three regimes for the discharge. The first
is the collisional regime, where power is put into the bulk plasma by
conventional Ohmic heating. At lower density and higher driving
currents, the electrons mean free path is comparable to or larger
than the length. The discharge can still form, but the heating is now
stochastic heating of the electrons, caused by the electrons being
reflected from oscillating sheaths. Finally at sufficiently high
currents, the dc voltage drop at the electrode becomes larger than
that required to sustain the corresponding dc discharge. In this
case, secondary electrons emitted from the electrode and
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accelerated in the dc fields play an important role. Godyak calls
this the Y mode of operation. Here we concentrate mostly on the
collisional regime.

Shown in Fig (2.7a) are data from Godyak of probe data for the
density and temperature as a function of rf driving current. His
system was nearly one dimensional, with 160 cm?2 electrode area
and electrode separation of 6.7 cm. Other than the electrical drive
parameters, the main additional parameter was the gas pressure.
For the data in Fig (2.7a), the gas pressure was 0.3 Torr. The data
shown is for argon, and data was taken for both argon and helium. Up
to a drive current of about 40 mA/cm2, the electron temperature is
constant at about 4 eV and the density increases linearly with
current. Beyond this, the temperature falls and the density rises
more rapidly. Godyak attributes this to the transition to the y mode.
Although the temperature falls, the electron distribution begins to
sprout a tail on non thermal electrons.

Shown in Fig (2.7b) is a plot of discharge power dissipated
versus current for the same discharge parameters. Also drawn in
are two straight lines corresponding to linear increase in power
with current and also corresponding to an increase with the current
to the 2.5 power. As we will see, this data is reasonably consistent
with theory of rf discharges in the collisional regime. Finally, in Fig
(2.8) is shown an analogous power plot for the collisionless case,
where the pressure is 0.003 Torr. The straight lines shown now
have slopes 4/3 and 8/3.
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3. Particle Collisions in Processing Discharges

Since processing discharges are weakly ionized, the most
important gas phase collision processes are those with the
background neutral gas. Here we briefly review the basic binary
collision processes. Many different types of elastic and inelastic
collision processes are important in a processing discharge. First
we consider binary collisions between two particles labeled with
subscript a and b. The initial velocities are va and vp, and the
masses are my and mp. The center of mass velocity is given by

Vo = (MaVa +MpVp)/(Ma+mp) (3.1)
and the relative velocity is given by
V =Vgq-Vp (32)

Velocities after the collision are denoted by primes. If the energy
change in the collision is denoted by AE, corresponding to a change of
an internal state of one of the colliding particles, conservation of
momentum and energy gives the result

Vo= Vo', uv2/2 = uv'2/2 + AE. (3.3)

where p is the reduced mass mamp/ma+mp. Thus, according to
Eq.(3.3), the change of internal energy can come only from the motion
about the center of mass. If the two input velocities vy and vy are
known, conservation of momentum and conservation of energy
(assuming AE is specified) give four of the six unknown velocity
components for the particles after the collision. We define the
other two components in terms of two collision angles. These are 6,
the scattering angle in the center of mass frame, and ¢, the angle
about the scattering plane. The minimum distance of the linear orbit
of, for instance particle a from the center of mass position, defines
an impact parameter b. The relation between b and 6 defines the
scattering cross section as

c(6,v)sin6dé = bdb (3.4)

Often published graphs of scattering cross section are integrated
over angle, so that what is shown is perhaps Jo(6,v)dQ, for estimates
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of total number of collisions, or Jo(6,v)(1-c0os0)dQ, for estimates of
momentum or energy change. Here Q denotes solid angle.

In an elastic collision (AE=0), Eq.(3.3) shows that the
magnitude of the relative velocity of the two particles remains the
same before and after the collision so it rotates through the angle 6
in the scattering. One can calculate the change in momentum of
particle a:

Apa = -u(1-cos6)(va-vb) (3.5)

A straightforward calculation of the energy change of particle a
gives the result

AKa = ‘k(1'CO$9)[2Ka‘2Kb + (mb-ma)Va‘Vb] (36)
where k = [u/(ma+mp)].

Since the electron is so light compared to the atoms, it loses
momentum at about the collision frequency, but loses energy much
more slowly. Thus in low density processing plasmas, the
equilibrium normally is one in which the electron temperature can
be much higher than the gas or ion temperature.

Let us now calculate the force between electrons and atoms in
a discharge if they have an average drift with respect to one
another. This is

Fe = -u’d3Ved3Va nenafefa(Ve-Va)VO'p(V) (37)

where ng is the electron number density, fg is the electron
distribution function normalized to unity over velocity, and
analogously for atoms. The quantity opis the momentum exchange
cross section,

op(v) = JdQo(8,v)(1-cos6) (3.8)
Analogously for collision frequency, vp = navop. It is this collision
frequency as a function of energy which was plotted in Fig (2.1a) for

0O2. Since momentum is conserved, there is an equal and opposite
force on the atoms. To evaluate the integrals, one would have to
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caiculate the magnitude of the relative velocity in terms of ve and
va. We do this in Section 7 where fluid equations are derived, and
assuming a fairly simple collision model. A similar calculation for
the kinetic energy exchange between isotropic distributions electron
and atoms for elastic collisions is given by

Ke' = -kjd3Ved3Va[2Ka‘2Ke+(me'ma)Va‘Vb]nenaVG(V) (39)

with an equal and opposite term for the atoms. We evaluate this
also in Section 7.

To proceed with a description of a processing plasma, it is
necessary to have a knowledge of the collision cross section op as a
function of energy. For the processing plasmas which are not simple
chemically to begin with, and then which decay into many species of
ions and free radicals, this information is not always easy to obtain,
and qualitative estimates are often the best one can do. Brown is
one place where data is tabulated, and he gives a prescription for
how one might obtain various collision data with a computerized
library search. For some of the simpler gases, we show some data
here taken from Brown. The simplest case is a rare gas plasma
because it is atomic. In Fig.(3.1a) is shown the momentum exchange
collision cross section for argon as a function of energy. In the
regimes of interest to processing plasmas, about 1-10 eV, the cross
section is an increasing function of energy, so the collision
frequency is an even more rapidly increasing function of energy.
Above about 10 eV, the collision cross section is reaonably constant
over the energies of interest to processing discharges, and then
slowly decreases with energy. The minimum cross section at about
0.3 eV is called a Ramsauer minimum. Shown in Fig (3.1b) is the
momentum exchange cross section for helium, also from Brown.
This is a decreasing function of energy. In fact since it decreases
roughly as E-1/2, the collision frequency is approximately constant
as a function of energy.

Molecules, but not atoms, have excitations that have energies
typically comparable to or less than the electron temperature in
processing plasmas. These are the rotational states (excitation
energy of typically 10-4-10-2 ev) and vibrational states (excitation
energy of typically 10-2-2 ev). Often the inelastic collision rate for
excitation of these states is quite high, so much so that in
molecular plasmas, the energy loss collision frequency of electrons
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is much greater than that for atoms, 2(m/Ma)vp. For the case of
molecules, we relate the energy exchange collision frequency to the
momentum exchange collision frequency by a factor {(v). The
Westinghouse Research Laboratory has measured and calculated
many of these cross section in the mid sixties. This is what is
shown in Fig.(2.1a) for Oz as a function of energy.

Shown in Figs.(3.2a and b) are the cross sections for elastic,
electronic, vibrational and ionization cross sections of Oz as a
function of energy from Ref.(73). From the cross sections shown, it
appears that the {(v) factor will not be grater than about 0.1 at any
energy.

We will now consider inelastic processes like ionization,
dissociation of molecules, or excitations of electronic states which
have a relatively high threshold energy (say 10-20 eV) compared to
the the electron temperature in most processing plasmas. Since the
electrons are the energetic species in the bulk of a processing
discharge, they are the source of all such processes assuming they
occur in the bulk. (There are energetic ions in the sheaths which we
will consider later.) In Fig (3.3a), from Brown, is shown the
ionization cross section as a function of energy for a variety of
molecular gases.

Once the cross sections are given, the rate for the process can
be calculated. For instance let us say the process of interest is the
ionization of background atoms by electron impact.. The impact
ionization cross section is then given as some function of v. The
rate at which ions are produced by impact ionization is then given by

ne' = Id3vnenavo'i(v)fe = Gi(Te)nena (31 0)

Let us assume that the electron distribution function is Maxwellian
and take the relative velocity between the electron and atom to be
equal to the electron velocity. The ionization cross section is zero
until one is above the threshold energy Ei. Then it increases roughly
linearly with energy until is maximizes at a value of oo at about four
times the threshold energy, at which point it decreases again with
energy, generally as InE/E-1. If Ei>>Te, as is usually the case with
processing plasmas, we will approximate the cross section as

ci=0o(E-Ej)/3E;| (3.11)
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Then the expression for a(Te) can be written as approximately
ai(Te) = [400/3][Te/2nm]1/2exp-(Ei/Te), Ei/Te<<1 (3.12)

with Tg in ergs. Analogous expressions can be written for
excitations of electronic states, dissociation of molecules, and any
other process having a high excitation energy, as long as the
electrons are Maxwellian. The exponential factor is the same factor
as appears in the so called Arrhenius form for chemical reaction
rates. |If the temperature is low compared to the activation energy,
this factor gives the dominant temperature dependence. While this
formula is not exact, it does give a very useful first approximation
to a large variety of rates in a processing plasma.

Now it is worthwhile to discuss the relation between the
ionization rate o« above, and the first Townsend ionization
coefficient, which we will denote at. The latter is historically
defined in terms of an electron swarm experiment, where an
electron beam swarms into a gas and ionization is measured as a
function of distance from the electron beam input. Typically a very
low electron current is injected by the cathode and self fields are
unimportant. If the electric field is sufficiently large, the
ionization builds up exponentially in space from the cathode. The
spacial growth rate of electron density is the Townsend first
ionization coefficient a1 Electron current proceeds towards the
anode, and ion current goes back to the cathode. The current is
relatively easy to measure as a function of distance, so one can
measure this coefficient at. However, as we will see, in the self
sustaining discharge, the local electric field is not usually equal to
the voltage divided by the electrode separation.

Thus the Townsend coefficient is defined in terms of
ionization per unit length, and uat = aj, where u is the drift velocity
of the electrons. To calculate at from, say distribution functions,
one must know the electron drift velocity. Furthermore, in the older
literature, it is rare that the electron temperature was introduced.
Typically, when one tried to do a first principles calculation of aT,
Te never appeared, and the calculation is always in terms of electric
field divided by gas pressure, E/P. Not only is this a less direct
calculation, there were strong disagreements in the earlier
literature over whether the assumptions and calculations were valid
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at all. Throughout this paper, we will use only «; and will not use
the older Townsend coefficients.

Along with ionization, there is also electron impact excitation
of the electronic states of the atom or molecule. This is more fully
discussed in Sec. 5. Generally the excitation energy is quickly
radiated awayand is a power loss to the system. In some cases, long
lived energetic states called metastables with energy Em are
produced. These can be important because they can be ionized with
an electron of lower energy, energy greater than E;-Epm. Also if
EmM>Ei/2, metastable-metastable collisions can give rise to
ionization also. For instance in the common fluorescent lamp, the
discharge is controlled by such two step proceses. However, we
generally do not consider metastables here.

Now we consider recombination processes. Since
recombination is an inelastic precess, the presence of another
particle is required to conserve momentum and energy. In the
simplest case, this is a photon, and the process is called radiative
recombination. We will discuss this somewhat in Section 5 as an
example of how the process can be easily calculated from the photo
ionization cross section. However this is not usually very important
in processing plasmas. Often the most important recombination is
at the wall, where it serves as the third body. In fact, in this paper,
we generally assume that the wall recombination is so strong that
any ion that gets to the wall recombines and is recycled to the
plasma as a neutral.

However there are important two body recombination
processes in the bulk. These are processes where all elements to
the collision are particles. Schematically, these processes are
written as

A+BC->AB+C or AB+CD-AC+BD
and generally their cross section is much higher. Thus
recombination is almost always much more important in molecular

plasmas than in atomic plasmas.

We consider first dissociative recombination, which for
oxygen is
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e+02*>0+0 (3.13)

This was recently reviewed by Mitchell, where he called it "one of
the most complex and least understood of atomic and molecular
collision processes". The theories are difficult to do, and the
experiments are difficult to interpret. Accepted values of cross
sections have changed by as much as a factor of 5 over the last few
years. A typical theoretical curve from Mitchell'92 is shown in Fig
(3.3b), and this would be a reasonable approximation for either a
nitrogen or oxygen plasma. As a reasonable model, one might
consider the cross section to vary as E-1 up to a maximum energy of
about 1 eV, after which it falls off very quickly.

The next process of importance is dissociative attachment,
where an electron attaches itself to a neutral molecule and
dissociates the molecule at the same time. For oxygen, this reaction
is

e+02-50+0 (3.14)

Dissociative attachment is only important in electro negative gases,
so it is important in an oxygen plasma, but not a nitrogen plasma.
Processing plasmas often have such electronegative gases as
chlorine and flourine, so dissociative attachment could be a very
important process there. Thus one could expect that negative ions
could play an important role here. (If there are many negative ions,
one must, of course consider detachment as well as attachment.)
The dissociative attachment cross section depends not only on the
electron energy, but also on the internal vibrational state of the
oxygen molecule, that is on the gas temperature. For a gas
vibrational temperature of about 300°K, the minimum energy for
dissociative attachment is about 4 eV. As the gas is heated, this
minimum energy decreases. Shown in Fig (3.4a), taken from Brown is
a plot of dissociative attachment cross section for oxygen at 300°K.
Generally here we neglect the effect of gas heating, although at
sufficiently high elecron density, it can be important.

Finally we will discuss charge exchange. Here, an ion gives its
charge to a neutral. If the ion has high energy, as it might in a
plasma sheath, after the charge exchange, one is left with a fast
neutral and a slow ion. Typically charge exchange is the dominant
ion-ion collision process in a processing plasma. Shown in
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Figs.(3.4b) and (3.4c) from Brown are charge exchange cross sections
of N2+ and Oa+* in various host gases. The charge exchange
maximizes between the ions and the corresponding neutral. In all
cases, for the energies shown, the charge exchange cross section is
is reasonably independent of energy. At lower energies,
corresponding more or less to room temperature, the charge
exchange cross section of an ion in its host gas increases from the
results in Brown. Shown in Fig.(3d) is a result from Banks and
Kockarts'93 of the charge exchange cross section of N2+ in its parent
gas at very low temperatures (compared to those in Fig 3.b). Note
also that Bank's result is for the momentum exchange cross section,
which is twice the exchange rate for a collision in which the
resulting ion does not change direction. Thus as a general rule, the
charge exchange cross section of a fairly simple ion in its host gas
is a few time 10-15 cm2 at temperatures of several eV, and is a one
or two times 10-14 cm2 at temperatures around room temperature.

For rare gases, the picture is similar. Shown in Figs (3.4e) and
(3.4f), also from Brown, are charge exchange cross sections for
Helium and Argon in the the parent gases. The argon cross section is
reasonably constant, while helium decreases as a function of energy,
but not nearly as rapidly as E-1/2.  Thus constant charge exchange
cross section is a reasonalbe approximation for these gases also.
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4. Kinetic Theory for Particles with No Internal Structure

Let us assume that the processing discharge we are
considering has particles with no internal structure. Thus collisions
are elastic and the internuclear force is a central force. The
distribution function for each particle species is determined by the
Viasov Equation for that species

8fa/8t + V'Vfa + (ea/ma)[E'l'VXB/C].vaa = Caa+Cab+... (4.1 )

Where the C's on the right hand side denote the contributions to the
change in fz due to the binary collisions specified.

We concentrate now on the collision terms. When particle b
collides elastically with particle a, particles with velocity vp are
lost from the distribution function fp. The rate at which particles
are lost in a phase space volume d3vd3x is

ofp/ot(out) = -fd3vadQao(A,v)viafp (4.2)

Note that it is not necessarily obvious from Eq.(4.2) that momentum,
eneryy, or even particle number is conserved.

To show things like conservation of momentum, as well as to
complete the description of the collision integral, we must also
calculate the rate at which particles are scaitered into the velocity
cell d3v centered at vp. This is

ofp/atd3vp(in) = [d3vp'd3va'c'(8',v')V'fa'fp' (4.3)

where we have denoted with primes the value of the velocities of
particles a and b before the collision. The integral over d3vp'd3vy’ is
over only that three dimensional portion of the six dimensional
double velocity interval which places the final velocity of particle b
within d3vp of vp.

To proceed, we relate various before and after collision values.
The basic collision, which takes a particle out of velocity element
Vp is shown in Fig.(4.1a). Now we relate this collision to another
collision which puts particles into the velocity element at vp. First
consider the time reversed co’ sion, shown in Fig (4.1b) which puts
the particle into velocity element -vp as shown. Then take the
mirror image in the plane perpendicular to vp. This collision is
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shown in Fig (4.1¢c). Note that the final velocity of the particle is
now Vp S0 that this collision puts particles into the velocity
element around vp.

This collision is related to the original collision by time
reversal and reflection. As we saw in the last section, the
magnitude of the relative velocity does not change before and after
the elastic collision. Thus the time reversed collision will have the
same magnitude of relative velocity, and of course so will the
reflected collision. Thus v=v'. Since the particles have no internal
structure, the collision cross section also is the same for the
forward and reversed as well as the reflected collision. Thus o=0".
The only other quantities to consider are the differential elements
of velocity space. The collision arises from a Hamiltonian
representing the interaction between the two particles. We know
that in any Hamiltonian interaction, phase space is preserved before
and after the collision. The collision is assumed instantaneous, so
the configuration space volume d3ris unchanged. However the
collision that puts particles into vp is related to the time reversed
and reflected collisions. These operations do not change the phase
space volume either so d3vad3vp=d3vy'd3vy'. Thus the expression for
the total change of fp, dfp/dt(in)-dfp/dt(out) becomes

Cba = -8abld3vadQ o(6,v)v[fafp-fa'fp'] (4.4)

where Sap=1 if a=b and dap= 1/2 us a=b. It accounts for the fact that
if a=b, each collision is counted twice if the factor of 1/2 were not
present. In order to simplify the notation, we usually will not
specifically include the factor separately unless it is specific ally
required to avoid confusion. Equation (4.4) is the Boltzmann
collision integral for particles with no internal structure. The
prime in the second term in the brackets means particle which
collide into velocities va and vp.

The fact that
0(0,v)vd3vad3vp=c(6’,v')v'd3vy'd3vp’ (4.5)
is called the principle of detailed balance. For the case of the
simple collisions we have been considering, not only is the product

of the factors in Eq.(4.5) equal, the individual factors are also. This
results from the simplicity of the collision for the case of particles
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with no internal structure. As we will see later, for the case of
particles with an internal structure, the principle of detailed
balance still holds; however the individual factors are themselves
no longer equal.

There are several properties of the Boltzmann collision
integral which can be easily proved and are reviewed here. First of
all, if f is initially positive everywhere, it stays positive. If fp is
positive and were to go negative, it would first have to be zero at
some velocity. However if fp=0 at this velocity, Eq.(4.4) shows that
Cba is greater than zero, so that f, would become positive at
subsequent times. It is also not difficult to show that the
Boltzmann collision integral conserves mass, momentum and energy
in the plasma. If Yp denotes a component of momentum, mass or
energy of the particle b, the collisional rate of change of Y is

Y' = -fd3vad3vpYprdQo(0,v)v[fafp-fa'fo’] + b—a (4.6)

where Y' is the total change of the quantity summed over both
colliding species, a and b. |f we consider the change within a
species, the same logic applies. The integrand is symmetric with
respect to changing a and b so the b—a term can easily be
incorporated into the integral. Now since va and vp are simply
variables of integration, we can label then as vy' and vp' in Eq.(4.6).
Then, using the fact that for the elastic collision between particles
having no internal structure, d3vzd3vpdQov=d3vy'dvy'dQ's'v', by the
principle of detailed balance

Y' = -[d3vad3vpdQvo(0,v){Ya+Yo-Ya-Yo)lfafo-fa'fe’]  (4.7)

However the term in the bracket {} is simply the sum of the mass,
momentum or energy before and after the collision in question.
Since mass, momentum and energy are conserved in the collision,
this bracket vanishes, thereby proving that mass, momentum and
energy are conserved for the entire plasma by the Boltzmann
collision integral.

Next we prove the Boltzmann H theorem, essentially a proof

that entropy increases until the plasma reaches an equilibrium
state. We define the quantity H as

H = -3pld3vp fpinfp (4.8)




By multiplying the Boltzmann equation by Infp and integrating over
velocity and space, one can get an equation for the total change of H
over the entire plasma. Let us first consider the convective terms.
Since [Vfp]infy is the gradient of a function of fp Z(fp), (Z(f) =
(1/2)f2Inf-(1/4)f2), the integral over space vanishes as long as the
plasma is isolated so that the boundary terms in the spatial integral
vanish. If the terms do not vanish, then there is a flux of H (an
entropy flux actually) into the system from the boundary, which we
do not consider here. The contribution to dH/dt from the E and B can
be written as divergences in velocity space of vector functions of
Z(f). These vanish on integration over velocity.

We now consider the collision terms. By the same logic as was
used in the derivation of conservation of mass, momentum and
energy, we find that

dH/dt = 0.253ap Jd3vad3vpdQvo(8,v){In[fa'fo/fafb}lfa'fo'-fafe]  (4.9)

Since the f's are everywhere positive, the integrand is positive
everywhere also. Thus the conclusion is that dH/dt is always equal
to or greater than zero. Note however that an important step in this
proof is the summation over species a and b. The H of one component
does not necessarily increase, a decrease of Hy might be balanced by
a larger increase of the H of the interacting component Hp,. However
the total H increases. Correspondingly, the contribution to dH/dt of
a species through its self interaction also increases. Of course H
cannot increase without limit because f integrates to unity over
velocity. Since H increases or remains constant, and is bounded from
above, the plasma must evolve toward a state in which H'=0.

Hence the H theorem allows one to derive an equilibrium
distribution function for the plasma. For a homogeneous, force free
plasma oJf/at will vanish as long as

fafb - fa'fb' =0 (410)

or as long as

Infa + Infp = Infa' + Infp’ (4.11)




Recall that a and b denote particle parameters before a binary

collision, and a' and b’ denote the values after the collision. Thus

the natural log of f must be one of the quantities conserved in the

collision. There are three and only three such quantities so

conserved, the mass, momentum and energy. Thus the equilibrium
- distribution function must be

fo(v) = np(mp/2rT)3/2exp[-(mp/2T)|v-u|2] = npfmp (4.12)

Notice that T (the temperature or 2/3 of the thermal energy) and u
(the average velocity) have no subscript. These values must be the
same for each species of the plasma if it is to be in thermal
equilibrium. The constants in the distribution function are chosen
so that when integrating over the velocity, the result is the density
np. The thermal energy of the species Wy is obtained by integrating
1/2mp|v-ui2 over the distribution function, giving Wp = 3npT/2.

To continue, we consider the equilibrium distribution function
for a non flowing species of plasma in an external force. For
convenience, we will take the case of charged particles in an
electrostatic potential. As we have seen, a local Maxwellian
distribution function is a thermal equilibrium distribution function
as long as interparticle collisions are the only thing taken into
account. We then consider what spatial dependence will render the
Maxwellian distribution an equilibrium distribution in the external
field. That is we consider a distribution function of the form

fo = np(r)fmb (4.13)
Because the velocity distribution is considered to be Maxwellian
(with the same temperature for all species), the collision term in

the Boltzmann equation vanishes. Thus if a density can be
determined so that

veVnpfmb - Np(ep/Mp)VdeVyfmp = 0 (4.14)
the equilibrium distribution in the external force can be obtained.
One can easily show by direct substitution that an np can be found
and is

Np = NpoeXp -ep®/T (4.15)
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where npo is the number density of species b at ®=0. For a single
species, getting the distribution in an externally provided
electrostatic potential is not difficuit as we have just shown. For a
plasma which comprises several species of very different masses
and positive and negative charges, the thermal equilibrium
distribution function in the external field can be considerably more
complex if it exists at all. |f the electrostatic field is itself
generated by the charge separation in the plasma, and the charged
species in the plasma are ions and electrons, we must have

V20 = 4ne(ne-nj) (4.186)

as well as Eq.(4.15) for thermal equilibrium. Notice that in a falling
potential, the electron density decreases while the ion density
increases. It is very rare that this describes any aspect of a
processing plasma. As we will see later, in non neutral sheaths,
where neg=nj, one species or the other is not in thermal equilibrium.

We now consider ion charge exchange collisions. If the
collision is that of an ion with its parent neutral, this is like that of
a particle with no internal structure. Generally these are the most
important ion neutral collision processes. These collisions are
particularly important in the sheaths of processing plasmas where
the ions are accelerated. In this case, particles are conserved
within the ion species. However since we are primarily concerned
with the sheath ions, their energy is assumed to be much greater
than the energy of the target neutral. Thus we assume that the ion,
after the collision is replaced with another ion at zero velocity.
Hence if the target neutrals have number density N, the collision
integral for charge exchange is

Cin= -N|vlox(V)fi(v} + N&(v)fd3v'ax(v")|V'|fi(v") (4.17)

In Eq. (4.17) above, all velocities refer to ion velocities; the neutral
particles are simply considered to be background targets for the
ions. (at least until the neutral becomes an ion). Also oy is the
charge exchange collision frequency. The first term in Cjp is the
standard term we have used for particles scattering out of a
velocity element around v. The second term is different in that the
only particle velocity after the collision is assumed to be zero.
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Clearly, Cin conserves ions, but it does not conserve either ion
momentum or energy. Also there is no particular tendency for
Eq.(4.17) drive the system toward thermal equilibrium, because the
target particles are assumed to be non interacting. The reaction of
the neutrals is neglected here. Thus there is no detailed balance, or
tendency toward Boltzmann statistics if one considers the ions
alone.
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5. Kinetic Theory and Rate Equations for Atoms

In this section, we extend the kinetic theory calculations to
the cases where the particles do have internal structure. We
consider the case of atoms with only electronic excitations and as
ionizations. We first consider the case of excitations alone. In the
binary collision, particle a has excitation energies E(a,j), where the
index j denotes the various atomic excitations. The distribution
function now has an additional index j.

To derive the kinetic equation for the case where the particles
have internal degrees of freedom, we follow the procedure of the
previous section. Specifically, Eq.(4.2) still applies and the rate of
particles of species b and internal energy E(b,j) (the unexcited
particle is defined as having internal energy of zero) scattered out
of the region of velocity space is

dfpj/at(out) = -3ifd3vadQae(6,v.E(b,j),E(a,i))vfafp (5.1)
The particles scattered in are given by
fpj/ot(in)d3vp = Tijld3vad3vpe'(0',v',E(b',j'),E(a",i"))V'fafp: (5.2)

The ‘integral over velocity variables and summation over i'j' in
Eq.(4.2) is only over those primed velocities which put the final
collision products within d3vad3vp of va and vp after the collision;
and over those i'j which leave the particle b in energy E(b,j) and
particle a in energy E(a,i).

For the case of elastic collisions of particles with no internal
structure, the relation between velocity interval, relative velocities
and cross sections for the forward and reversed collision provided
crucial information which simplified the collision integral and
verified Boltzmann statistics. This no longer holds true for the
individual factors in the integral for the case where the atoms have
internal structure. For instance v (recall it is the magnitude of the
relative velocity in the center of mass frame) is no longer constant
in an inelastic collision, which implies also that d3v =[v3/v'3}d3v'.
However there is a principle, called the principle of detailed balance
which says that Eq.(4.5) holds even if the individual factors are not
themselves equal. Using the principle of detailed balance to relate




the rates of the forward and reverse processes, we find that the
collisional contribution to ofp/dt is

ofpj/at = -Zild3vadQo(6,v,E(b.j),E(a,i))v[faifbj-fai'fbj] (5.3)

As before, the collisional rate of change of fy; vanishes if faifp;-
fai'foj'=0, or if Infai +Infp) = Infai' +Infpj', and one can still prove the H
theorem. Thus, as before, in equilibrium, the logarithm of the
distribution function is proportional to quantities conserved in the
collision. These are now the momentum and total energy of the
particles, the total energy now being the sum of the internal energy
and the kinetic energy. Thus the equilibrium distribution function is
now given by

fo,j = Q(T)-1 exp-[E(b,j)/T}fp(v) (5.4)

where fp(v) is the equilibrium velocity distribution given by
Eq.(4.12) and

Q(T) = 3 exp-[E(b,j)/T] (5.5)

where the summation is over the assumed finite number of states.
Q(T) is called the partition function and it depends on the
temperature as well as on the way the different internal states of
the system are distributed. Another way of expressing Q is

Q(T) = X*jgjexp-[E(b.j)/T] (5.6)

where gj is the number of different states with energy E(b,j) (that is
the degeneracy of the state), and the summation (with the star) in
Eq.(4.6) is now over distinct energies rather than over distinct
states. The quantity gjis also called the statistical weight of
energy state E(b,j). Thus the principle of detailed balance allows us
to write the collision integral for the case of inelastic collisions in
a way that the Maxwell Boltzmann statistics of the equilibrium can
be derived. Alternatively, one might postulate Maxwell Boltzmann
statistics for the equilibrium, and use this to derive the principle of
detailed balance for the particular kinetic theory studied.

Let us briefly consider Q(T). It is a summation over all of the

states or over all of the energy states multiplied by the statistical
weight. The energies of the bound states are within some range
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from the minimum energy to the ionization energy. However because
the Coulomb force is very long range, there are an infinite number of
bound states. Thus the summation in Eq.(5.5) diverges if the
summation is actually taken over all states. However there is some
practical upper limit to the number of states. For instance the
hydrogen like atom with energy state n has an energy of Ei/n2 below
the continuum. One possibility is that the atom is thermally ionized
when its own thermal motion is above the ionization energy. If the
gas has a temperature from room temperature to a few hundred
degrees centigrade, the maximum n for distinct ion states is about
15-20. Also, the radius of an atom of principal quantum number n is
roughly n2a,, where ag is the Bohr radius, about 5x10-9cm. Thus the
cross section becomes large with n, so n's above about this value are
probably not of physical interest.

Hence, for states above some maximum level, the excited
states become in many ways indistinguishable from ionized states.
This is the maximum excited state which the summation in Eq.(5.5)
should be carried to. For an energy state n, there are roughly n2
angular momentum states. The number of n states for which the
partition function transitions to that for an ionized gas is denoted
by An so the upper states do not contribute much to the partition
function as long as Annmax2exp-(E¥T) <<1. Thus the truncation of
the summation is most valid at low temperature.

We digress briefly to discuss molecular plasmas. Here there
are not only electronically excited states, but also rotational and
vibrational states of the molecule. The calculation of the partition
function and the associated partition of the molecules among these
states must also be considered. Unlike the case of electronically
excited states, there are only a finite number of rotational and
vibrational states. When the rotational energy becomes too high, the
rotation begins to interact with the inter nuclear vibration. The
binding energy between the nuclei of the molecule is a short range
force, so there are only a finite number of excited vibrational states
of the molecule. To the extent that rotational, vibrational and
electronic states can be regarded as distinct, the partition function
can factored into rotational, vibrational and electronic factors.
From this, one can determine the thermal equilibrium partition of
molecular internal energy into these components.
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Let us now consider the ionization of the plasma thermal
equilibrium. If the ionized electron ion pair are considered to be an
excited state with the ionization energy, an argument entirely
analogous to that above, shows that the number of electrons, ions
and atoms satisfies the relation:

NeNi/Ng = [eXp-Ei/T]GeGi/Ga (5.7)
where E;ionization energy and
Ga = X'jgjaexp -{(Eja-Eoa)/T} (5.8)

for atoms and, with identical definitions for electrons and ions. Eo
is the ground state energy for the species, and we have used the fact
that

Eoi + Ece - Eca=Ei (5.9)

The key is to get the G factor for the additional free particle
produced in the ionization (the electron). The electron has no
internal structure, but it does have a spin, so there is a degeneracy
factor of 2 from the spin. Since the electron is free, it is highly
degenerate and the Gg factor is quite large in nearly all cases. The
electron is assumed to be in a system of length L confined in a
volume V =L3. It has wave function

y = exp 2riper/h (5.10)
and the boundaries impose the quantitization condition px = nhiL,
where n is an integer, and the number of free electron states within
a velocity space volume d3v is m3d3vV/h3. Integrating over all
possible electron velocities with the assumed Boltzmann
distribution, and accounting for the spins of the electrons, we find
that

Ge = 2V(2rmT)3/2/h3 (5.11)
so that

neninag = 2[2rmT/h2]3/2(Gi/Ga)exp(-Ei/T) (5.12)
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using the fact that Ne¢/V=ng. Equation (5.12) is the Saha Equation and
it relates the ionization fraction to the temperature and the internal
atomic structure at thermal equilibrium. Since for most atoms and

ions, Ga=Gj, the Saha equation is often written without the G factors.

Now let us consider several of the ionization and
recombination processes. Here we will consider only two for atomic
systems; impact ionization and the reverse process of three body
recombination, and photo ionization and the reverse process of
radiative recombination. As we have seen in for instance EQ.(3.12),
impact ionization can be written with an ionization rate a;.
Including the two ionization processes and their inverse processes,
the equation for electron density can be written as

dne/dt = QjNgNg - ﬂinezni + apnal - ﬁpneni (513)

where the subscripts on the a's and B's denote the impact and photon
processes, and | is the photon density. In thermal equilibrium,
dne/dt must be zero, so this gives a relation between the a and B
coefficients. Because there are different functional dependencies on
production rate and loss rate depending on the process, in general
there is no relation between say the different a's for the different
processes. However there is always a relation between the a and
the B for the process and its inverse, as would be expected from the
principle of detailed balance. This relation must give the same
functional relation between the densities. For instance, balancing
impact ionization with recombination gives

neni/na = a;i/Pj (5.14)
while balancing photoionization with radiative recombination gives
Neni/na = apl/Bp (5.15)
This is the same relation as long as ai/fj= apl/Bp. Of course for this
to be so, the photons are in thermal equilibrium at temperature T.
Thus, at thermal equilibrium, the rate of the ionization process and

its inverse are related by the Saha equation for all ionization
processes.




To demonstrate the utility of the Saha Equation, we use it to
calculate the rate of radiative recombination. The flux of photons at
frequency v incident on an atom is the energy density at frequency v
times ¢, divided by hv. The cross section for photoionization
maximizes at the ionization energy and then falls off in frequency.
We assume a frequency dependence of ionization cross section as o;j
= go(vi/v)P for v>vjand zero otherwise. The energy density of the
electromagnetic radiation is given by the Planck spectrum

E(v) = [8xhv3/c3){exp(hv/T)-1}-! (5.16)

Then one can do an asymptotic approximation to the integral to
arrive at this result

(lpl = [81!0'0EizTe/CZhsleXp-Ei/Te
= 4x1023T(eV)Ei2(eV)oo(cm2)exp-(EiTe) (s1) (5.17)

for low values of Tg. Here E; the ionization energy is hvi. Then from
the Saha Equation, we can determine that the Bp coefficient for
recombination into the ground state is

Bp = (8nooEi)/[2(2rm)3/2T 41/2¢2)
= 6500(Cm2)Ei2(eV)/Te1/2(eV) (cm3/s) (5.18)

Of course recombination is not only to the gro::nd state, but also to
all excited states of the atom. Assuming the atom is hydrogen like,
each energy state denoted by n has energy below the continuum of
Ev/n2. Also each n has L angular momentum states from zero to n,
and each state L has 2L+1 depending on the orientation of the angular
momentum vector. Thus the total numbzr of states for each n is
about n2. The summation over energy states then converges rapidly
and the expression for recombination to the ground state is
approximately correct. If o, is taken as approximately 10-17 cm?
and E; as about 12 ev for oxygen, Eq. (5.18) agrees with the radiative
recombination rate as tabulated by Dutton. Hence from the Saha
equation and thermal equilibrium considerations, one can estimate
the rate of radiation recombination even for the case where the
radiation density is far below thermal equilibrium, the case for
most non thermal processing plasmas. Coronal equilibrium is

35




defined as that where impact ionization is balanced by radiative
recombination. State populations in coronal equilibrium depend only
on electron temperature.

While the ionization rate and recombination rate are, in all
cases related by the Saha equation, this can at times be misleading
because the most important ionization and recombination processes
might not be inverses of each other. Consider the case of three body
recombination. Using Eq.(3.12) for the ionization rate and the Saha
Equation, one would surmise that the recombination rate coefficient
B is proportional to Tg-1. However this three body recombination
rate is the rate for recombination directly into the ground state
with no intermediate radiative decays. Another reaction path is for
the atom to recombine into a highly excited atomic state and then
radiatively decay to the ground state. Because the highly excited
state has a very large radius, as we have discussed, these cross
sections can be very large. (Also the lifetime of these states to
radiative decay is very short, so in a nonequilibrium plasma,
ionization of these states will not be important.) Let us estimate
the B coefficient for this process. At low temperature, two
electrons which collide exchange energy of about Te. The closest
these electrons can get to each other is a separation e2/Te, and as
they approach each other, one of them typically stops. If an ion is
within this distance of the electron that nearly stops, the electron
can form a highly excited bound state of the atom. The
recombination rate then is the two particle collision cross section
ne4/Te2 times the density of electrons n, times the relative
electron velocity, (Te/me)1/2, times the probability that an ion is
within the interaction region, nn(e2/Te)6. By using the average
radius of an excited atomic state, the quantum number squared
times the Bohr radius; and the energy of the state compared to the
continuum, the Bohr energy divided by the quantum number squared,
we see that the state after collision is generally bound. Thus the
three body recombination rate into highly excited atomic states is
approximately

B(cmb/s) = @10/(mgTe9)12 = 4x10-27T4-9/2(eV) (5.19)
Thus for low temperature plasmas, the three body recombination
rate via the formation of highly excited states can greatly exceed

the direct three recombination rate into the ground state.
Comparing Egs.(5.18) and (5.19), we see that radiative recombination
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dominates three body collisionless/radiative recombination as long
as

nTe4 < 1012, (5.20)

the usual condition for processing discharges. To derive Eq.(5.20),
we have assumed E; =10 eV and 65 =10-17 cm2.
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6. Homogeneous, Molecular Plasmas

Processing plasmas are not usually atomic plasmas, although
atomic argon plasmas are used in sputtering. The fact that the
plasma is molecular gives rise to chemistry, as well additional
internal states which would figure in the energy equation of the gas
species. In this section we will discuss one of the simplest
molecular plasmas, an oxygen plasma. We start with a discussion of
a low density plasma with hot electrons and cool neutrals and ions;
the type usually found in processing discharges; and conclude with
brief considerations of thermal equilibrium oxygen plasmas.

One thing about a processing discharge is that the free
electrons play a very important part in the chemistry. The reason is
that the rate of a chemical process goes as o = Jovf(v)d3v, so that
the electrons, with their lighter mass and higher temperature give
rise an a which is (TeM/Tgm)1/2 larger than that of the gas if the
cross sections are equal. Thus, even though the overall temperature
of the discharge is low, there is chemistry characteristic of very
high temperatures going on, because of the presence of the energetic
electron species whose temperature may be between about one and
ten electron volts.

We also consider low density plasmas, so that the chemistry is
mostly through two particle collisions. The typical reaction is then
something like

A+BC->AB+C

and these usually have high reaction rate. An alternate possible two
body reaction like

A+B - AB + hv

is usually less important because radiative recombination rates are
small as we have seen in Sec.(5). Another possible chemical
reaction, O + O - Oz is also typically not important in a processing
plasma. The direct radiative rate is very small. The other possible
reaction channel is through formation of an excited molecule and its
interaction with a third body. This is a three body process, which
we assume is negligible at the low densities considered. However if
the third body is the wall of the chamber, atomic oxygen can easily
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recombine. Thus surface reactions can be a whole new reaction set
which we will not consider here.

One of the most complex and intimidating things about the
processing plasma is the number and complexity of the possible
reactions. Also, as we have seen, there is often disagreement
regarding just what the rates and cross sections are. Furthermore,
it is not always clear where to find the appropriate reaction rates
and cross sections, and to what extent published rates should be
trusted. As we have seen, they are often corrected in subsequent
research. (Rates given here should not be taken as better than factor
of two accurate.) Electron rates should really be obtained from
integrating the cross section over the velocity distirbution.
However simple expressions like Eq. (3.12) can often give a
reasonable qualitative estimate.

Sources of cross sections and rates in the plasma literature
include Brown, Guervich, and Talrose and Karachevtsev's chapter!94
in Venugopapans Reactions Under Plasma Conditions. Two sources
for reaction rates of atmospheric gases are the NIST105 and DNA10€
Handbooks. Also there is a Journal called Plasma Chemistry and
Plasma Processing, edited by E. Pfender, and particular articles
quote specific reactions rates relevant to the process considered in
the article. Finally there are two journals of data, Atomic Data and
Nuclear Data Tables, and Journal of Physical and Chemical Reference
Data. Looking through the last fifteen years of publication of these
journals, one finds many articles which look potentially useful for
particular discharges. In the former, one especially useful article is
D.L. Albritton197, as is Dutton?2 in the latter. Finally, there is one
published bibliography of reaction rates, but unfortunately, it is
about 25 years old198. This lists a tremendous number of reactions
and then gives references where they can be found. For instance for
dissociative attachment of oxygen, it lists 18 references.

Let us then consider the two body reactions in an oxygen
plasma. We first consider a large number of possible reactions, and
then make certain approximations to reduce the problem to a smaller
and more manageable set. The reactions are
lonization:

e+ 02 - 2e + O2t (6.1)
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described by EQ.(3.12) with an ionization energy of 12 eV and a
maximum ionization cross section of 3x10-16 ¢cm2. This value for
ionization coefficient agrees reasonably well with that tabulated by
Dutton. Then there is ionization of the oxygen atom,

e+0 - 2e+ 0+ (6.2)
with Ej =15 ev, 0o = 3x10-16 cm?2;
Dissociative ionization:

e+02-520+0+ 0+ (6.3)

with Ei=20 ev and oo = 10-16cm?2- Cross sections for these processes
are given in Ref(104) and agree reasonably well with that from Eq.
(3.12).
Dissociation:

e+02-5e+0+0 (6.4)

described by Eq.(3.12) with Ej=8ev, 6o = 10-16 cm2. This expression
agrees to within about a factor of two to that given in Ref.(104) p80.

Then there is ion chemistry.
O++02-502++0 (6.5)

The reaction rate here is given as 1.9x10-11 c¢cm3/s by Albritton for
an ion temperature of about 600°K. This agrees reasonably well
with that surmised from Brown's expression for charge exchange
cross section with an assumed ion thermal velocity of 2x104 cm/s.
This reaction has a fairly large cross section, so even though the ion
velocity is small compared to the electron velocity, its rate is
competitive with the electron driven reactions. The inverse
reaction is

Ozt + 0 - O++ O2 (6.6)
with a rate of about 10-11 cm3/s.

The electrons are lost mostly by dissociative recombination.:
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e+02*-50+0 (6.7)

Assuming a dissociative recombination cross section as
o=4x10-16/E for E<3ev and zero otherwise (here and in all formulae,
energies are in ev and lengths are in cm) the dissociative
recombination rate is given roughly by (2.6x10-8/VT¢)[1-exp-(3/Te)]
in cm3/s. This agrees reasonably well with the DNA reaction rate
handbook.

We do not consider excitations separately, but regard these as
energy sinks that go into determining the electron temperture.
Reference (61) considers the production of metastables as end
points for oxygen reactions, but apparently it does not consider
secondary processes infolving them. Here we neglect metastables.

These are the main reactions which we will limit ourselves to.
We calculate these rates by assuming a particular electron
temperature, which we take as 3 ev, a typical electron temperature
for an oxygen processing plasma. However there are many other
possible reactions. For instance a tremendous Pandora's box is
opened up by the generation of negative ions. Since oxygen is an
electro-negative gas this is a possible reaction. If only two body
reactions are allowed, the most important one is dissociative
attachment.

e+02-504+0 (6.8)

This depends on the vibrational state of the molecule. For gas
vibrational temperatures below about 1000°K, the attachment cross
section peaks at about 10-19 cm for energies between about 5 and 8
ev as shown in Fig (3.4a). The attachment rate is given by roughly
(6.4x10-12/NT)x[(5/Te+1)exp-(5/Te) - (8/Te+1)exp-(8/Te)] Although
the rate of dissociative attachment is small, it is the largest
production rate for negative oxygen ions. At a temperature of 3 ev,
this attachment rate is small, about 10-12. However it can be much
larger under a variety of circumstances including higher electron
temperature, as is characteristic of electron cyclotron resonance
plasmas; higher gas density, so three body attachment is important;
and higher neutral temperature so the minimum energy for
dissociative attachment gets smaller.
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Along with attachment, there are the analogous detachment
reactions. First there is electronic detachment:

e+0 -52+0 (6.9)

The minimum electron energy for detachment is about 7 ev and above
this energy, the cross section is about 7x10-16. This gives a
detachment rate of 3x10-7T¢-1/2exp-(7/Tg). Then there is
associative detachment:

O+0-502+e€ (6.10)

The rate for this process is given as 3x10-10 in ref (104) p.110. If
both ions are charged, the reaction rate can be even higher, as in
positive-negative charge exchange:

O +0+-204+0 (6.11)
or .
O +02t 202+0 (6.12)

Reference (61) quotes a rate of 3x10-7 for the former and 10-7 for
the latter. We assume that rate here.

The O- does not appear to be a source of O2-. The possible
reaction O- + O2 - O2- + O has a reaction rate of only 10-22 cm3/s
according to Guerevich. O- does appear to be the main source of
ozone however. For oxygen molecules in the ground state, the
reaction is

O+02-503+e (6.13)
with a reaction rate of 3x10-15 according to the DNA handbook.
However if the oxygen in in an electronically excited state, the

reaction rate is much more rapid. In the a’Ag excited state the
reaction

O + O2(a'Ag) » O3+ e (6.14)

has a rate of 3x10-10, again according to the DNA handbook. Thus
for a more rigorous description, there has to be an entire set of
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chemistry for the excited states. Once ozone is produced, there
becomes the possibility of positive and negative ions of ozone. A
reaction like

O3 +e - O3+ + 2e (6.15)

can occur with a rate given by Eq. (3.12). There is also the
possibility of charge exchange

O3+0 — 0+ 053 (6.16)

with a rate given by 8x10-11 according to Albritton. Finally, if
ozone is present, there is also neutral chemistry

O+ 03 - 202 (6.17)
and
02+03-5202+0 (6.18)

with reaction rates respectively of 2x10-11 exp-[2300/T(°K)] and
5x10-11exp-[2850/T(°K)] according to the NIST atmospheric rate
handbook.

Clearly, the chemistry is very complicated in the general case.
We make the simplifying assumptions that the negative ion
production rate is unimportant. For the electron temperature of 3 ev
that we consider, the rate is small (Eq.(6.8)), and the rates of the
reactions returning the O- back to O2, and O, are large (Eqs(6.9-11),
the steady state concentration of negative ions is small. We then
neglect the O- and all of its derivative chemistry.

To see the validity of this, let us consider a simple steady
state chemistry for O-. There is only one source, the reaction of
Eq.(6.8), which is about 10-12. It is destroyed through many
reactins, but we will consider only the positive negative ion
recombination, Eq. (6.12). If this determines the equilibrium
concentration of O-, it is given roughly by

N(O-) = 10-5ngN(Oz2)/N{O2+)
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If ng is about equal to N(O+), we see that as long as the ionization
fractin is significantly larger than 10-5, N(O-) << N(Oa2+).

However, even for this relatively simple system of oxygen and
nothing else, we have identified seven important reactions; Eqs(5.1-
5.7). Below we enumerate the processes and the approximate
reaction rate in cm3/s at an electron temperature of 3 ev, a typical
temperature for a processing discharge. We denote the reaction rate
by a; where i denotes the equation number 6.1-6.7

Process ‘ - Rate in cm3/s
oL | 2x10-10
o2 6x10-11
o3 PR 6x10-11
o4 6x10-10
as 2x10-11
o6 10-11

a7 10-8

in a weakly ionized processing plasma with low gas temperature,
and electron temperature in the ev range, all of the reactions
proceed only in the forward direction. The reverse reactions, in all
cases (except for 5 and 6 which of course are reverse reactions of
each other) have an energy threshold that the heavy particles cannot
get over, or are three body reactions which do not proceed at low
density.

In the simplified set, there are five chemical quantities, Oz, O,
02+, O+ and e, whose number densities will be denoted respectively
a,b,c,d and e. The rate of change of the quantities are then
determined by the five equations describing the seven reactions.

a' = -(ay+a3+ag)ae - asad +agbc (6.19)
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b' = (-agb+aza+2a4a+2a7c)e + asad - agbc (6.20)

c' = (a1a-ayc)e + asad - agbc

(6.21)
d' = (aob+a3a)e - asad + agbc (6.22)
e = (nja+azb+aza-ayc)e (6.23)

where a prime indicates a derivative with respect to time. It is
simple to verify that the reactions (6.19-6.23) together conserve
" arge as indeed they must.

Since a processing plasma is in steady state, a natural
question is whether the steady state constituents of this non
thermal equilibrium processing plasma can be determined from the
gas phase chemistry alone once the reaction rates (that is the
electron temperature) are specified. Although some quantities may
have steady state densities determined through the chemistry, in
general the answer is no, or at least not an equilibrium that
resembles the weakly ionized equilibrium known to exist in glow
discharges. For instance from the equilibrium equation for the
electrons, the e' equation, if we assume that b<<a, then we find a
steady state value of ¢ equal to about 3% of a. However in a steady
state glow discharge, the value of the ionization is much less, under
10-3. Thus the equilibrium values resulting from the e' equation
does not give an equilibrium consistent with what is observed.
Similarly consider the a' equation. If exd, as it must since e=c+d,
then we find that a must be about 3% of b for equilibrium. This is
also not the case of a weakly ionized oxygen discharge, for which
the neutral gas is almost entirely O2.

Hence the conclusion is that gas phase chemistry alone does
not determine the steady state components of the oxygen discharge.
As we will see in a later section, it is gas phase chemistry coupled
to the fundamental discharge processes and surface chemistry,
which determine the composition. Specifically, there is a much
greater electron loss term arising from diffusion to the walls, and a
much larger source of O2 from recombination on the walls (surface
chemistry). Thus the geometry and the plasma physics are playing a
very important role in determining the chemical composition of the
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discharge. This ic in contrast to the much lower temperature
ionospheric plasma, where Gurevich has shown that gas phase
chemistry alone can give the composition of the plasma. The main
difference is that the ionization here is photoionization, whose rate
is independent of electron density. Thus there is no tendency for
avalanche, and the electron driven chemistry rates are all bounded
by the photoionization rate.

We now consider briefly the opposite extreme, a molecular
plasma at thermal equilibrium. Here, all species (including the
radiation) are at a given temperature T. In order for equilibration to
occur, the gas density is usually much higher than glow discharge.
Because the dense background gas is at the high electron
temperature rather than the cooler gas temperatures characteristic
of low density processing discharges, the equilibrium plasma is
usually much more energetic, even though the temperature is
typically less than that of the electrons in a low density discharge.
Typical temperatures might be under 1 ev. In thermal equilibrium,
the reverse reactions cannot be neglected, in fact thermal
equilibrium is defined by a balance between forward and reverse
reactions which are satisfied for all possible reactions.

Let us consider the reactions we have just discussed for an
oxygen plasma, except let us make the additional simplification of
neglecting the O-. Then there are 6 reactions with forward reaction
rate a1-ag. However at thermal equilibrium, the reverse reaction
can also occur, and we define the rates of the reverse reactions as
B1-Pe. Notice that we redefine ag here as Bs and dissociative
recombination and its inverse becomes reaction six.. The reactions
and the reverse reactions all conserve charge and mass, so e=c+d and
a+2b+c+2d=A, the total number of oxygen nuclei. Setting each
reaction rate to zero at equilibrium, we find six equilibrium

relations
aia = Brec (6.24)
azb = B2ed (6.25)
a3a = fzebd (6.26)
a4a = P4b2 (6.27)
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asad = Bsbe (6.28)
ogeC = Bgb? (6.29)

These six equilibrium conditions specified plus the conservation
relations would appear to over specify the system. However this is
not so, because the equations are not all independent. For instance
a, an oxygen molecule, can go to 2 b's, oxygen atoms, directly via
equation (6.27), direct dissociation. However alternatively it can go
to 2 b's by first going through an intermediate stage of an e and c,
ionization, Eq.(6.24); and then the e and c react to give 2 b's by
dissociative recombination, Eq.(6.29). Thus there must be a
relationship between the rates of the two reaction channels of
getting from the a to the two b's. Specifically, we must have Bi/a; =
Bsa¢/Bss. The other two relations between the rates are Bias/a3fs =

B2/a2, and Biaa/Baa) = Bs/as. This is the principle of detailed balance
applied to molecular systems, where it is known that in thermal
equilibrium, forward and reverse rates must individually balance,
and not rates around a cycle'99. Furthermore, reactions 1, 2 and 4
are just direct ionization and dissociation reactions, so the forward
and inverse rates are related by the Saha equation. Hence for the
three additicnal reactions, representing more complicated
chemistry, the three additional constraints relate the forward to the
inverse reaction rates. If additional reactions between only these
five species become possible (for instance multi-body reactions at
higher density, or new reaction channels at higher temperature), the
new constraints would also be between the forward and backward
reaction rates.

Going back to the thermal equilibrium oxygen plasma, we find
the three relations for b. ¢ and d, in terms of a given value of A
become

(c+d)c/(A-2b-c-2d) = By/ay (6.30)
b2/(A-2b-c-2d) = o4/Ba (6.31)
(c+d)d/b = a2/B2 (6.32)

These three equations then determine t. ¢ and d, and from these, e
and a are also determined. It is analogous to the Saha equation for
atomic systems.
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7. Homogeneous Plasma in an Electric Field

Virtually all processing plasmas exist in the presence of an
electric field, either dc, rf or microwave. With an electric field, the
distribution function in velocity space is no longer necessarily
isotropic. For an anisotropic electron distribution function in a
weak electric field, a natural approach is to expand the distribution
function in a series of basis functions in angle to the electric field.
These are usually taken to be Legendre polynomials. We adopt that
approach here, and consider only the first two terms. The main
collision process is assumed to be between the electrons and the
neutral gas atoms or molecules. These collisions are mostly in
angle so that the distribution function has as its main tendency the
isotropization of the electron distribution function. However
anisotropies and scattering in energy are also very important.

We assume that the background gas atoms are simply fixed
scatterers, so the equations are now linear in the electron
distribution function. However now that the target atoms decouple,
there is no H theorem, so the electrons will not necessarily evolve
toward a Maxwellian distribution. As we will see, the distribution
will depend on the functional form of the collision frequency.

Let us expand the electron distribution function in the series
f(v,a) = fo(v) + cosa f1(v) (7.1)
where cosa = vz/v. Since the distribution function is normalized to
unity when integrated over velocity, and only f, does not integrate to
zero, the normalization is
Io“ 41tV2fo =1 (7.2)
Similarly, the average velocity in the z direction, ugis

ue = (4n/3)fo=v3fy(v)dv

If u is cosa, then we integrate the Boltzmann equation over p from -
1 to 1, and multiply it by p and do the same. This gives two coupled
equations for fo and f1 which are




ofo/ot - [eE/3mv2]a/av(v2fy) = Sp (7.3)
and
of1/9t - (eE/m)afg/ov = S (7.4)

where Sq is one half the collision integral integrated over yu and Sy
is three halves the collision integral times p integrated over pu.

Now let us consider the collision model for electrons colliding
with the heavy particles. The heavy particles are assumed to be
fixed scattering centers randomly located. However these may
absorb or give some energy to the electron in the binary collision,
either because M=« or because internal energy states get excited.
We assume that the collision between the electron and atom is that
of a light particle with a fixed scattering center, except that the
electron can gain or lose energy in the collision by some prescribed
amount.

In this case, in the Boltzmann collision integral, the
distribution function for the target atoms simply drops out. In the
collision integral, there were integrals over v, from scattering out
of a velocity cube of size d3v centered about v; and also integrals
over d3v' of a particle centered about v' which scatters into the cube
about v. As discussed in Section 4, if the collision has an energy
change, d3v' = (v/v)3 d3v. Even for the case of elastic collisions,
this factor should still be used if the heavy neutral target particles
are simply considered to be target particles which do not otherwise
interact. Thus the collision integral is

S = (na/v3) [dQ[v'4c(v',0)(V) - v4c(v,8)f(V)] (7.5)

where Q is the solid angle denoting the scattering. The next step is
to insert f from EqQ.(7.1) into Eq.(7.5), multiply by the zeroth and
first power of u and integrate over p to obtain Sg and Si.

We start by considering S¢. In the p integral, only even powers
of u will contribute. These are the terms containing only f1, so

S1 = -(3na/2v3)[dQ_; 1dp[v'4c'u'-véctulu (7.6)
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Consider first the case where the velocity change is small, as is the
case for elastic collisions, and excitations of low energy internal
states. Then v'=v, and the integral is non zero principally because
p=p'. Now we must obtain the relation between u and p'. If the
scattering event takes place in the plane defined by v and z, then
clearly o' = a+6 and cosa' = cosacos - sinasin®. Now consider the
more general case where the scattering is not in the plane. Imagine
that the vector V' is rotated by an angle ¢ about the v vector out of
the vz plane. Then v' can be decomposed into two vectors parallel
and perpendicular to v. The component of the parallel vector in the z
direction is cosacos6 independent of ¢. The component of the
perpendicular vector in the z direction does depend on ¢ and it is
sinasin@cos¢. Thus

cosa' = cosa C0SH - sina Sind cosé (7.7)
This then allows us to do the integral over u with the result
S1 = -navf1]/dQo(v,0)(1-cos8) = —vp(v)fy (7.8)

where vp is the momentum exchange collision frequency from
Eq.(2.8).

Continue now with the evaluation of So. The even powers of p
in the p integral now are only in those terms containing f,. Thus the
u integral works out trivially. Then assume that v'-v is small in the
binary collision, so v'-v = 0.5v[AK/K] where K is the kinetic energy.
Thus

So = (na/2v2){3/av JdQ(AK/K)o(v,0)v41o} = 0.5v-23/av(vkv3fy)  (7.9)

where vk is the angle averaged collision frequency for relative
energy exchange. For the case of elastic collisions with heavier
atoms, at rest, the energy loss is given by Eq (3.6) with vp and Kp
taken to be zero and with the a species taken to be the electrons. In
this case the angular factor is just the same as for momentum
change, so

VK = 2(m/Ma)Vp (7.10)




For the case of inelastic collisions which do not greatly change the
energy, the more general expression for vk = {vp, discussed in
Section 3 must be used.

To summarize, the equations for f, and f; become:
ofo/ot - [eE/3mv2]o/av(v2fy) = 0.5v-29/ov(vkv3fo)  (7.11)
df1/at - (eE/m)dfo/dv = —vp(v)fy (7.12)

Let us solve these for the distribution function for the case in
which E = Egcoswt and vk is given by Eq.(7.10) as is appropriate for an
atomic plasma such as argon (at least for electron energies less
than e lowest electronic excitation energy). Since Eqgs.(7.11 and
12) ars nonlinear in f and E, f's are generated at all harmonics of o,
with fy being a summation over odd harmonics and f, being a
summation over even harmonics. As with the Legendre polynomial
expansion over angle o, we retain only the zeroth and first
harmonics, so

f1 = [eEodfo/dvim(w2+vp2)] (vpcosat - wsint) (7.13)

Inserting for fy in Eq.(7.11) and setting the time derivative
equal to zero because only the zeroth harmonic is considered, we
find

'eonrzafo/aV/3m(Vp2+0)2) = (m/Mj)fo (7.14)

where Eo is the rms value of the electric field. For the dc case,
Eor=Eo, while for the ac case, is is Eq/V2. Equation (7.14) can easily
be integrated to give

fo(v) = A exp-[3m3/e2Eqr2Ma]fov dv [-v (vp2+w2)] (7.15)
Where A is chosen so that the distribution function is normalized to
unity. If the collision frequency is independent of energy, fo is a
Maxwellian with temperature

Te = Ma@2Er2/3m2(w2+vp)2. (7.16)
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Notice that if w>>vp, the distribution is Maxwellian even if the
momentum exchange collision frequency does depend on particle
energy.

For the dc case where the mean free path, rather than the
collision frequency is independent of energy, vp-~v, so the
distribution function goes as exp-(v/ve)4. On the other hand, for a
molecular plasma where inelastic collisions are generally more
important, and vk >> (m/Ma)vp, the energy dependent {(v) must be used
inside the velocity integral instead of m/Ma. Since { is generally
greater than m/M, , the temperature of a molecular plasma is lower
than that of the atomic plasma, and/or the electric field is greater.

The distribution function characteristic of constant mean free
path is called a Druyvesteyn distribution and it is very important in
gas discharges. The normalized distribution is

f(v) = A exp-(v/ve)4, A = 3/4nve3r(3/4) (7.17)

where I'(3/4) is given approximately by 1.23. The temperature,
defined as 2/3 of the average value of 0.5mv2 is given by

T = [[(5/4)/T(3/4)](1/2)mve2 ~ (1/4)mvg2 (7.18)

Notice that at given temperature, the thermal velocity ve is larger
by a factor of ¥2 than it is for the corresponding case of the
Maxwellian. Thus while the Druyvesteyn has a 'tail' with much
smaller population that the Maxwellian, the 'body' extends out to
higher velocity. Finally let us consider the ionization rate for a
Druyvesteyn. Assuming that the ionization rate has the functional
form given in Eq.(3.11) and Te<<E;, the Eijterm in the integral can be
integrated analytically, whereas the E term cannot. Making an
asymptotic approximation to this integral we find that for the
Druyvestyn,

aj= [0o(Te/m)1/2exp-(Ei/2T¢)2)/[3.7(Ei/2T¢)2] (7.19)

Note that at very low temperature, the ionization rate of the
Druyvesteyn is lower than the Maxwellian, because of the
depopulation of the tail. However at somewhat larger temperatures,
the ionization rate of the Druyvesteyn can actually be greater, due to
the fact that the body extends to higher energy.
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There is interesting recent probe data for rf discharges on the
distribution functions for different types of collisionality. This is
Godyak's data for the argon and helium plasma at a pressure of 0.3
Torr. At this pressure and with a drive frequency of 13 MHz, the
electron collision frequency is greater than the drive frequency, so
the fact that the discharge is rf rather than dc will not have a large
effect on the predicted distribution function. For helium, where as
we have seen, the collision frequency is nearly constant, the
distribution function at a variety of different drive currents is
shown in Fig (7.1a). Up to the largest currents, where the discharge
is in the y regime, the distribution function is Maxwellian. For
argon, the case is more complicated due to the Ramsauer minimum.
From about 6 to about 25 eV, the energy exchange collision cross
section (proportional to op) is reasonably constant,and at higher
energies, it slowly decreases. Thus, above about 6 eV, the
distribution should be Druyvesteyn like. Below 6 eV, the momentum
exchange collision frequency increases sharply with energy. Thus
below this energy, the index of the power law in the exponent should
be even greater than four. However if the thermal energy is greater
than about 4-6 eV, as it must be if there is to be ionization, the
difference in the distribution function will not be very noticeable,
and the general structure should be Druyvesteyn like. This is found
to be the case for argon, and Godyak's data for argon at 0.3 Torr is
shown in Fig.(7.1b). Up to the onset of the y regime, the distribution
functions are Druyvesteyn like.

Let us now consider the current in the plasma. As is apparent
from Eq.(7.13) for fy, there is both an in phase and out of phase
component. We consider now the dc case, so there is only an in
phase component and

ug = (4n/3)(eE/m) [o=dv(v3/vp)afo/ov (7.20)

For the simplest case of vp independent of velocity, we find that
ue = eE/mvp (7.21)
This might make it appear that ue would be proportional to E plasma

discharges. However this is an oversimplification and is true only if
vp is independent of v. In the more typical case where the mean free
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path is independent of energy (as for instance an oxygen plasma as
shown in Fig (2.1a)), we find that

Ug =< E/ﬂaTe”z (7.22)

For the dc case, the temperature is itself a function of E/nj given by
Eq (7.16) with w=0. Instead of m/M,, we use { which is itself a
function of Te when averaged over velocities as is apparent from Fig.
(2.1a). Assuming that {«<TeB and the elastic cross section is
independent of energy, we find that

Te o« (E/ng)2/(2+) (7.23)
and
Ug = (E/ng)(B+1)/(B+2) (7.24)

For the oxygen plasma with B=2.6, we find that the temperature
scales as (E/na)0-43 and the drift velocity scales as (E/ng)9-78. The
actual exponents from Fig.(2.1b) and the discussion in Section 2 are
0.5 and 0.7. Thus the predicted values agree reasonably well with
the observations. For nitrogen, one gets comparable agreement, but
not quite as good agreement.

So far we have considered only the solution for the
distribution function where the energy loss from an elastic or
inelastic collision is small compared to the electron thermal energy.
The dominant effect of these collisions in the fo equation is now to
remove particles from the tail of the distribution function and
replace them in the body, but with an energy loss corresponding to
the ionization, excitation or dissociation energy. Since f in the tail
is so much less than what it is in the body, we will not consider the
replacement into the body. Hence there is an additional contribution
to Sp which is -vefo. Also we assume vg is zero unless the energy is
above a threshold value. Sometimes this is strictly valid, as in the
case of an oxygen plasma, where the excitation process is
dissociative attachment, and the electrons actually are lost. On the
other hand, the vibrational excitations of nitrogen from about 2-4
electron volts constitute a barrier near the thermal energy, so
strictly, the repopulation of the body below 2 ev has to be
considered for accurate results (see Fig 2.2). The equation for fg,
for the case of the dc electric field, then becomes
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(e2E2/3m]o/av[v2/vplafo/ov + 3/av[vkv3io/2] -v2vefo = 0 (7.25)

If the third term were not present, the solution would be as given in
Eq.(7.15), and we will denote this solution now as h(v). If fy is now
denoted by fo = g(v)h(v), we can reduce Eq.(7.25) to a single second
order differential equation for g(v). Making a WKB approximation to
the solution, we find that

g(v>vq) = exp -[(V3 mvp/eE)fy1v dv'{112(v')] (7.26)

and of course g(v) is unity for vevy. The factor {(v') is the ratio
between energy loss and momentum exchange cross section as a
function of velocity, and the factor outside the integral is V3 divided
by the drift velocity. Clearly the high energy tail of the distribution
function is depleted. This in turn reduces the ionization or

excitation rate from the approximation based on a Maxwellian given
in Eq.(3.12). If there is more than one such process, ve is simply a
summation over the important processes.

Let us consider this qualitative theory for the case of nitrogen
and the vibrational barrier between two and four electron volts. The
drift velocity for a 3 ev electron is about 3x106 cm/s if E/N is about
2x10-16Vcm2, according to for instance the swarm relations, and
¢(v') averaged over 2-4 ev is about 0.05 from Fig 2.2. In that case
we see that the additional drop in the value of distribution function,
as the electrons go from 2-4 ev is about 7 orders of magnitude.
Shown in Fig. 7.1 is a plot of the distribution function calculated by
Brunet et al'10 calculated from a more accurate modeling of the
detailed vibrational excitations. Clearly the drop in log f(u) is
roughly correct for the case of room temperature ions, which
corresponds to the case of Fig.2.2. As the gas temperature
increases, the vibrational states are thermally populated, and
become less of an energy sink for the electrons, so that { decreases,
and so does the drop in f(u). Up to energies of about 10 ev, there is
nearly a plateau in f. This corresponds to the very small values of {
at these energies, also evident from Fig. 2.2.
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8. Scaling Laws for Binary Collisional Plasmas

We consider the case of a processing discharge consisting of
three components, electrons (index e), ion (i), and neutrals (n) which
may have internal structure. The main assumptions we make are
that the plasma density is sufficiently low that only binary
collisions are included, that the plasma is optically thin so all
radiation escapes and has density much less than thermal
equilibrium radiation density, and that electron and ion collisions
with the neutrals are dominant. Notice that thermal equilibrium
ionization densities would occur only by chance since the inverse
processes to impact ionization and radiative recombination are not
included in the model. However for most low density processing
discharges, these assumptions are valid.

The plasma is described by the Viasov Equation for the three
species coupled to Maxwell's Equation.

dfa/ot + veVf, + (ea/ma)[E+vxB/cleV\f = TpCap (8.1)

VxB = (4n/c)XpnpepVvp + (1/c)oE/at (8.2)
VeE = 4nY¥pnpep (8.3)
VeB =0 | (8.4)
VxE = -(1/c)oB/at (8.5)

The quantities n and nv are the first and second velocity integral of
the appropriate distribution function. @ While these equations cannot
be solved analytically there are scaling laws that which allow the
solutions in one regime to be extended to another. We consider only
scaling within an atomic species. If one goes from species to
species, collision cross sections for all the multitude of possible
processes depend very much on the atomic species and there is no
simple scaling law from one to another. Similarly, we consider only
scaling laws that leave particle velocity (and therefore energy and
temperature) constant. Cross sections often have complicated
velocity dependences for which there is no simple scaling.




Now we consider a scaling transformation of the form
f'=paf, t'=pbt, x'=pCx, v'=v, E'=peE, B' = p/B (8.6)

for the electrons and ions. If the plasma is weakly ionized and that
the neutral species is regarded as simply a background of density np,
the right hand side of Eq. (8.1) becomes nhC(fa) where a is e or i, and
C(fa) is a linear function of f3. Here there is a scaling, also valid for
a collisionless plasma where C(fa)=0, which is given by

a=2, e=f=1, b=C=-1 (8.7)

If we regard the background density n, as the scaling parameter,
then times and lengths scale as np-1, and electric and magnetic
fields scale as np. ihe distribution function fa, and correspondingly
the electron and ion densities scale as np2. For dc discharges, we
have seen that the current scales as np2 and the sheath cathode fall
distance scales as np-!. Both these scaling laws are consistent
with Eq.(8.7). Also, we have seen that in the positive column, the
temperature is constant if Rnp is constant. This scaling is also
consistent. Thus the scaling laws, which can be derived very easily,
are capable of predicting many of the features of the dc glow
discharge. In the case of collisionless plasmas, the same scaling
law applies, except that np is obviously no longer appropriate as a
scaling parameter. Some other parameter, for instance a length or
field could be used.

In most rf driven processing plasmas, the drive frequency is
very difficult to vary, but the background neutral density and the
input power can be more easily varied. The existence of the scaling
for weakly ionized plasmas can then allow one to surmise how a
known plasma would scale to different frequencies.

The scaling laws were derived for bulk plasma only. If the
plasma is bounded, the presence of the wall might introduce other
scaling. For instance the chemistry of the bulk plasma might be
affected by the wall. In the simplest cases, of absorbing or
reflecting wall, the wall would not affect the scaling, We saw this
in the case of the cathode sheath for instance.

.
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9. Fluid Equations for Processing Plasmas

This section derives fluid equations for a processing discharge
having three species n,e and i. Three fluid equations for number
density, momentum density and energy density are obtained for each
species by calculating the first three velocity moments of the
Viaxov Equation. The fundamental difficulty is that each moment is
coupled to the next higher moment by the v-Vf term in the Viasov
Equation. The hierarchy of fluid equations can only be closed by
making some sort of approximation. A typical one, one made in
Ref.(5) is that the distribution function of each species is
approximately a local Maxwellian. This is not an exact solution to
the Vlasov Equation for two reasons; first, the velocities and
temperatures of the components may be different, and second, the
system can be inhomogeneous and time dependent. The effect of the
different velocities and temperatures is an energy and momentum
exchange between the components as described in Sec 2. The effect
of the inhomogeneity is the introduction of transport. We will
consider these two processes separately.

To start, we will work with the electrons and assume its
distribution is a Maxwellian. |f the fluid velocity is u, the particle
velocity in Viasov equation is given by u+w, so w is the random
velocity about the average. Where convenient, to keep the notation
as simple as possible, we will delete subscripts denoting species.
Where necessary we will return to using them. Then integrating the
electron Viasov Equation over velocity and multiplying by mv and
integrating over velocity, we find two equations for electron number
density and momentum:

on/ot + V-nu = M¢ (9.1)

onmu/ot + V-[nmuu + nT] +neE + ne[uxBJ/c = Pen (9.2)

The charge e by convention is positive. Here, M¢c and P¢ are the
collisional rates of change of number density and momentum density.
The former comes from for instance ionization and recombination,
the latter from momentum exchange between the different species
as well as ionization and recombination. Often it is convenient to
combine Egs.(7.1 and 7.2) to give an equation for the acceleration of
the .plasma species:
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nmau/ot + nmu-Vu + VnTg +neE + ne[uxB)/c = Pgpn - muM¢ (9.3)

For the energy equation, multiply the Vlasov Equation by
1/2mv2 and integrating over velocity to get

d/dt[1/2nmu2 + 3/2nT] + V-[1/2nmu2u +5/2nuTg]
+ neu-E = Wen (9.4)

where Wgp is the collisional rate of change of energy density from
electron neutral collisions. The total electromagnetic energy input
into the fluid is the electric field dotted into the current density of
the species, as is to be expected. This can also be written as a
temperature equation by subtracting u dotted into the momentum
equation and adding 1/2mu2 times the number density equation. The
result is

3/29nT/at + 3/2u-VnTe + 5/2nTgV-u = Wen - U-Pen +1/2mu2M¢ (9.5)

Notice that in Eq.(9.5) above, the electric field no longer appears.
The Ohmic heating is now expressed as a collisional heating. In
equations (9.1-9.5), we emphasize that the assumption has been
explicitly made that the species has a Maxwellian velocity
distribution with temperature T and velocity u. Thus the collision
term for the interaction of the electrons among themselves
vanishes; the collision terms Mc, Pen and Wen describe changes in
number density, momentum and energy from the interaction of the
electrons the neutrals, almost always the most important
collisional process for weakly ionized processing plasmas.

Let us first discuss the momentum exchange. The average
force is given by Eq.(3.7). It is not difficult to show, that the
momentum integral of the Boltzmann collision integral can be
reduced to this form. For electron neutral collisions, we assume
that we >> Ue, Un, Wn and expand relative velocities based on this
scaling. Defining npweop(we) as the electron momentum exchange
collision frequency, vp(we), Eq.(3.7) can be expanded in a power
series. Keeping only the first few terms, we find

Pon = -pjd3wnd3we{wevp(w) +(Uue-Wn-Un)vp(We)

+Wean/aW9[Ue'Wn°un]-We]/W}fefn (9.6)
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where the notation Pgn means the average force, or momentum
exchange between electrons and neutrals. The integral of the first
term in the brackets is zero because of the assumed Maxwellian
nature of fa. The next term is

Pen = -Nel[Ue-Un}vp = -Pne (9.7)

where by vp we now mean the average over the distribution function.
Since vp is proportional to np, the force density has appropriate
symmetry between the species. For convenience, we will sometimes
use the definition vp(we) = Nnbp(we). The last term in EQq.(9.6), also
proportional to ue-up is a correction arising from the variation of v
with energy.

For elastic collisions, the energy density exchange between
species is given by Eq.(3.9). Again, one can show that an integral of
the Boltzmann collision integral gives this result. Expressing the
v's in terms of the w's and u's, we find

Wen = 'kjd3Wed3Wnnennfefnep[mW92+2mwe.ue+mueZ-MwnZ-
2Mwa-Up-Mup2+(m-M)(ue+We)-(Un+Wn)] (9.8)

Here we have used m and M for the electron and neutral mass
respectively. Also, we have made the simplifying assumption that
8p is independent of w. The integrals over w can now be done
assuming Maxwellian distribution functions. In addition to the
elastic collisions, there is a significant energy loss from inelastic
collisions. First we consider is impact ionization. This causes a
loss of energy Ej from each electron doing the ionizing, and a
corresponding gain of internal ion energy of this amount. Secondly,
analogous to Eq.(3.11), there is excitation of the electronic states of
the atom or molecule. Usually this energy is immediately radiated
away, although there are often some long lived excited states
(metastables) which can also affect both the energy balance and
chemistry. Thirdly, the electron loses energy due to the excitation
of rotational and vibrational and electronic states of the neutral.
We express the total energy loss as




Wen = -nevpl(3k+{(Te))(Te-Tn)+ k(mue+Mup)-(Ue-un)]
-EiMc -Wexc (9.9)

~ Included in Eq.(9,9) are temperature equilibration due to
elastic collisions, due to the inelastic collisions exciting rotational
and vibrational states, energy loss due to drift, which is generally
very small, and energy loss due to ionization and excitation of
electronic states.

Now consider the fluid equations for the ions. The ions have
nearly the same sort of internal energy states as the atom or
molecules and are closely coupled them. Nevertheless, since it
takes significant energy to ionize the atom, this energy must be
accounted for. If the ionization energy is Ej, each ion will be
considered to have an internal energy E;. Then the momentum
equation for the ions is given by the obvious analog of Eq. (9.3) and
temperature equation is

3/20(nTi+nE;)/ot + 3/2u-VnT; +TiV-nu + 5/2nTV-u =
Win - U-Pin +1/2mU2Mc (9.10)

The mass source term, M¢is just the term resulting from
ionization of the background gas. We consider here charge exchange,
which is often the most important momentum exchange process in
simple gases. The main place we will be concerned with the
dynamics of the ions are where the ions are accelerated in the
sheath. Here they have a large kinetic energy compared to the
neutrals. In this case, for constant charge exchange cross section,
and for energetic ions with velocity u, streaming through a gas of
background neutrals, we have

Pin = -ninnMujujox (9.11)

Now let us consider the heating term. There are two
conflicting effects. First of all, the particle, when it collides, loses
all of its energy, so that there is a significant loss of energy of the
ions. However due to the statistical nature of the collisions, a set
of ions starting rest from position x=0 will charge exchange at
different locations. This manifests itself as a heating. Performing
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the collision integrals the heating term in the ion temperature
equation is

Win - UiPin = njvx(Mu;/2 -3Ty/2) (9.12)

Once some heating has taken place so that T>Mu;2/3, the charge
exchange gives rise to ion cooling. Thus, often the simplest model is
to simply neglect the ion heating and consider the ion streaming as
that of a cold fluid. However we must always account for the
internal energy, Ejthat the ion carries. Whenever the ion
recombines, for instance at a wall, this energy is given back to the
wall, gas, or is radiated away.

We now consider the case of transport. This gives rise to
terms in the fluid equation which result from the fact gradients
render f(v) non Maxwellian. A method of deriving an augmented set
of fluid equations is to assume that the distribution function
consists of a Maxwellian times a summation of various products of
velocity. We consider only a single transport coefficient here,
thermal electron energy flux. A distribution function can be written
which has a non zero energy flux vector, q=/d3w1/2mw2wnf = 0. For
a Maxwellian distribution function, q=0, so no term from q appears
in the fluid equations as they have been written so far. If g=0, then
in the energy density equation, there is an additional term V.-q on
the left hand sides of Eq.(9.5). The trick then is to find q in terms of
fluid quantities.

We assume an electron distribution function
f=fm[1-q-(MW/nT2)(1-mw2/5T)] (9.13)

where fm is a Maxwellian for the electrons with Temperature T and
flow velocity u. The additional term does not contribute to the
density or the temperature because it is an odd function of w. The
coefficients of the two terms in the brackets were chosen so that it
does not contribute to the fluid velocity either. The lowest nonzero
moment of the assumed distribution function is the thermal energy
flux, which comes out to be equal to q.

To determine an equation for q, we take the 1/2mv2v moment
of the Viasov Equation. The first term (the d/dt term) is relatively
straightforward to calculate. It is 9/9t[1/2nmu2u + 5/2nTu + q]. The
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second term (the vVf term) is more complicated. To write the term
in simplest form, we assume that mu2<<T and also that muq<<nT2.
Making this approximation, we find that this term becomes 5/2vnT2
/m. Upon several straightforward partial integrations and vector
manipulations, the electric field term becomes -neu(u-E) -
1/2neu2E -5/2(eE/m)nT. The magnetic term is the most burdensome
of all to evaluate. It turns out to be

-[5/2(neT/mc) + 1/2(neu?/c)luxB - (e/mc)qxB. This involves a fair
number of vector identities and symmetries of f and fy. In
evaluating integrals over cross products in the terms leading to the
qxB term, it is often convenient to express cross products in terms
of tensor notation (axb); = ejjkajpk where ek is the completely
antisymmetric third rank tensor having +1 as the nonzero elements.

Thus the energy flux equation becomes
9/ot[1/2nmu2u + 5/2nTu + q] + 5/2VnT2 /m
-neu(u-E) -1/2neu2E -5/2(eE/m)nT -
[5/2(neT/mc)+1/2(neu2/c)juxB- (e/mc)qxB =Q¢ (9.14)
where Q¢ is the energy flux integral of the Boltzmann coliision term.
This can be simplified further by using the mass, momentum and
energy equations to manipulate the left hand side of Eq.(9.14) into a

form in which the terms that do not involve q are subtracted out
from the left hand side. The result is

ag/at +5/2(n"T/m)VT - (e/mc)qxB = Qg - Pc[5/2T/m+1/2u2]
- 5/3u(u-P¢) + 5/3uW¢ + Mc[5/2uT-1/6mu2u] (9.15)

In arriving at Eq.(9.15), it is necessary to drop terms in the spatial
gradient term which are small by factors like mu2/T or mug/nT2.
That is the flow velocity and energy flux velocity are all assumed
small compared to the electron thermal velocity.

In a weakly ionized plasma, the main electron collision
process is with the background neutrals. We assume that the
background gas consists of atoms of infinite mass compared to the
electrons which are at rest. Then we approximate P = nmueve, and
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we is multiplied by an energy exchange collision frequency smaller
by either m/M or { and therefore negligible.

if we further neglect the effect of the ionization on the energy
flux, we have the result that the right hand side of the flux equation
becomes Q¢-5/2TPc. Now let us look at Q¢ as gotten from the
Boltzmann collision integrals for stationary, infinite mass ions. |t
is

Q¢ = Jd3vdQ1/2mv2vnanea(v,Q)v(fe'-fe) (9.16)

where as before, a primed variable denotes the velocity of an
electron which ends up at velocity v after a collision of angle Q. In
writing Eq.(9.16), we have used the principle of detailed balance.
Thus, using these relations, and the fact that v is a variable of
integration which can be relabeled as v' in the integral, one can
derive the result

Q¢ = -Jd'vdQ1/2mv2(v-v')nac(v,Q)vfe (9.17)

Now for a scattering angle of 6, we can write v' = viycos6 +
viyxinsin®, where i is a unit vector perpendicular to the plane of
the collision. The perpendicular part then integrates to zero over
angle, and the parallel part is related to the momentum exchange
cross section. We find Q¢ = -fd3v1/2mv2vv¢(v)fe. Expressing v as
u+w, and assuming that vc¢ is independent of v, we find that Q¢ = -vpq
+ 5/2T¢P¢, so the equation for q becomes

[0/0t + vp]q -(qxQ¢) +5/2(nTe/m)VTe =0 (9.18)
where Q¢ is the vector electron cyclotron frequency. Generally, for
equilibrium conditions, we neglect the time dependence of q. Then
the value of q depeiids greatly on the magnitude and direction of the
magnetic field. Specifically,
qB = -5/2(nTe/mvp)(ig-VTe) (9.19)

and

aT = -5/2(nTe/m)[vc2 + Qc2) vV Te - iBXVTe} (9.20)




where the subscripts B and T mean parallel to and transverse to the
magnetic field. In all cases, the temperature gradient drives the
thermal conduction. If vp>>Qc, the thermal flux is parallel to the
negative temperature gradient and is proportional to the reciprocal
of the collision frequency as is conventional in kinetic theory. Here
however the collisions are with the atom background rather than
within the species being considered. |[f the magnetic field is large,
vp<<Qe, the thermal flux is anisotropic in the three directions of
magnetic field, temperature gradient perpendicular to the field, and
cross product of the two. The thermal conduction perpendicular to
the magnetic field is greatly reduced from its unmagnetized value.




10. Quasi-Neutrality and Sheaths in Plasmas

Far from walls, plasmas are electrostatically neutral. This is
called quasi-neutrality, or ambi-polarity. We have seen in Sec.(4),
Eqs.(4.15 and 16), that if strong electric fields are set up, they have
length scale of the Debye length (T/4nne?2)1/2. This is an extremely
small length, less than 100um for a plasma with density 1010 cm-3
and temperature 1 eV. Notice that quasi-neutrality does not mean
exact neutrality; the plasma, for one reason or another may require
small electrostatic fields, and these can come only from smali
differences in electron and ion density. As we will see, the
properties of quas: neutral plasmas are calculated using nj=ne as an
approximate solution of Poisson's equation and then calculating the
electric field from the remaining equations.

The plasma bulk will almost always be quasi-neutral over
distances large compared to the Debye length. However, there are
Debye scale potential and density variations about any plasma
boundary. It is interesting to note that the feature scale on the
workpiece (an integrated circuit for instance) can be much smaller
than the Debye length. Thus once the workpiece is etched into
patterns, there may be effects of charge separation in the plasma
local to the pattern.

Let us consider in more detail the formation of the sheath.
Consider a Maxwellian electron plasma of density n and electron
temperature T, but with cold ions, to be in contact with a wall. The
boundary condition on the wall is that it absorbs all particles
incident on it. This electron flux is n(T/2xm)1/2, Thus the velocity
into the wall is about the electron thermal velocity, and the
electrons within a Debye length of the wall are cleared out within
about a plasma period. The wall charges up negative and begins to
accelerate the ions toward the wall. Thus there is a flux of
particles toward the wall, and this flux is assumed to be absorbed.

Since the sheath has Debye length scale, which is assumed to
be much smaller than mean free path or geometric scale length, a
collisionless one dimensional model is valid. The sheath is at the
right hand edge of a collisionless plasma. The electrons have
temperature T and the ions are cold. Both have number density no far
from the sheath where the potential is defined to be zero, the sheath
is described by Poisson's Equation
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d2¢/dx2 = -4re(nj-ne) (10.1)

To solve this, we need the electron and ion density in terms of ¢,
starting from the edge of the sheath where by definition ¢=0. The
electron density is = ngexpe¢/T. At x=-o, far from the sheath, the
ion velocity is ug. Since nu=ngug, the ion density in terms of the
potential is nj = nouo/[uc2-2e¢/M]1/2,

We expect the iors to accelerate through the sheath, so we
expect ¢<0, that is we expect the plasma to have a higher positive
potential than the bounding surfaces in contact with it. Also, we
expect the sheath to have higher ion density than electron density,
since the ions are following the electrons out. For small ¢ the
electron and ion densities follow by linearization, nj = no(1+e¢/Mug?)
and ng = ng(1+e¢/T). For ¢<0, the ion density in the sheath is greater
than the electron density only if Mug2>T. Also from Eq.(10.1) it is
clear that if this is so, the sheath is exponentially decaying into the
plasma, otherwise Eq.(10.1) has a solution which is oscillatory in x
and the solution does not have the character of a sheath, but rather
of a wave. Thus in order for a sheath to be formed, we must have

Uo>[T/M]1/2 (10.2)

For the case of an equality in Eq.(10.2), this is called the Bohm
criterion. The Bohm criterion is often used as a condition separating
the plasma from the sheath, and in general this is correct. However
the situation is complicated in general, and to determine the actual
condition, one must look at the fluid solution both near and far from
the wall. The case we have been considering, a semi-infinite one
dimensional collisionless plasma in contact with a wall is under
specified. To satisfy the sheath condition, any incident ion velocity
greater than VT/M will suffice and smaller velocities will not.

To come up with a simple specified system, we will consider a
spherical instead of planar wall. We will assume that the spherical
radius is small compared to any other physical size characterizing
the plasma, but large compared to the Debye length. This then will
become the theory of a plasma probe, a common diagnostic. There is
an outer quasi-neutral region of size characteristic of the radius,
and a Debye length scale inner region, right near the sphere which is
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nearly planar. The boundary condition on the sphere is that it
absorbs every charged particle impinging on it. These recombine on
the surface and are recycled as neutrals back into the plasma. Far
from the sphere, the outer region is assumed to be an infinite
homogeneous plasma with cold ions, electrons of temperature T, and
number density ng. Thus there is both a particle flux and an electric
current to the sphere, and we wish to relate these to the potential
of the sphere. The potential of the plasma far from the sphere is
zero, and this is defined as the plasma potential.

Using the relation between the potential (and electric field)
and electron density, we find that the steady state collisionless ion
momentum equation becomes Mudu/dr = -(T/n)dn/dr, where we have
assumed quasi-neutrality, ne=nj=n. The steady state mass
conservation equation, in spherical geometry becomes d/dr(rénu) = 0.
Combining these, we find a single equation for u,

du/dr = -2u/r[1-Mu2/T] (10.3)

Notice that this equation is singular at u2=T/M, the precise velocity
defined by the Bohm criterion. However the singularity is only a
singularity of the slope, u itself is defined by Eq.(10.3) right up to
the singularity. In fact the equation can be integrated analytically.
To specify the outer solution, we need only integrate it subject to
the appropriate boundary condition.

The appropriate boundary condition for the outer solution is
that the singularity is at r=ro, the surface of the sphere. To see
this, note that at the singularity, the infinite slope means that
quasi-neutrality has broken down and that Poisson's equation must
be used instead of the quasi-neutrality condition. However Poisson's
equation has no singularity, but it has a higher derivative, d2¢/dx2,
which introduces a much smaller length scale where it is needed.
Thus the singularity is really the mathematical treatment begging
for inclusion of the shorter length scale, or higher derivative. Since
the Debye length is assumed to be much less than the radius of the
sphere, the singularity is at the spherical surface (or actually a few
Debye lengths away). The outer solution, determined by integrating
Eq.(10.3), subject to the boundary condition that the u=VT/M at r=ro
is

r2uexp-[Mu2/2T] = 1o2(VT/M)exp-1/2 (10.4)
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This solution is also consistent with the boundary condition at r=ee,
u=¢=0. At the singular point, the electrostatic potential is given by
e¢/T = -1/2, so the density is given by n=ngexp-1/2. Thus the mass
flux into the sphere is

dM/dt = 4rry2noM(VT/M)exp-1/2 (10.5)
and it is specified entirely by the outer solution.

The singular point near the spherical surface marks the
beginning of the inner solution. To actually determine the total
solution, one must in general do a matching of the inner and outer
solutions. Typically this is complicated and involves intermediate
solutions with scale lengths that are some fractional power of
products of the scale length of the inner and outer solution. In many
cases the information desired depends in detail on this matching.
The most famous case in the plasma physics literature is a tearing
mode, where the growth rate depends on precisely how the inner and
outer solutions are matched!11.112, Just patching them together at
the singularity will not give the growth rate of the mode.

Fortunately, the case we are discussing here is much simpler,
like some others involving shocks with multiple structure!13, and
the main information required, the current as a function of sphere
Voltage can be obtained with a simple patch. We are not here
interested in the precise structure of the transition region for its
own sake, so we will not look into the more complicated problem of
the detailed matching. However other sheath problems in processing
discharges may require this procedure.

The equation for the nonneutral sheath region is Poisson's
Equation

d2¢/dx2 = -4nene[(-T/2e¢)1/2exp-1/2 - exp(ed/T)] (10.6)

where we have assumed as initial values, the parameters at the
outer singular point. |f this equation is initialized with e¢=-T/2 and
a small negative slope, a sheath solution with a Debye length scale
will result. Since the sphere is assumed to simply absorb all
incident particles, and since the electron density is known as a
function of ¢, we can calculate the current as a function of the
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sphere Voltage ¢o. Of course the ion current to the sphere is simply
e/M times the ion mass accumulation independent of ¢. The electron

current density is that from half a Maxwellian at the electron
density of the wall. Thus the electric current is

| = -4rmerg2ng[(T/2rm)V/2exp(e¢o/T) - (VT/M)exp-1/2] (10.7)

For this solution to be meaningful, the potential of the sphere must
be less than -T/2e, or the outer solution will be non singular. At
this potential, the current to the sphere is large and negative, it is
nearly the full electron current of a half Maxwellian electron
distribution. As the potential is lowered, the magnitude current
decreases until it vanishes at a potential ¢¢

eof/T = 0.5[In(2xm/M) - 1] (10.8)

This is called the floating potential and is the potential a small
foreign body will float to if it is inserted into the plasma, but
cannot draw current.  For potentials much below this virtually all of
the electron current is cut off, and the current to the sphere is
positive current from the ion flux, independent of the inner solution.

Thus for the case of the absorbing sphere, the Bohm criterion
is correct, but the justification lies in the singular nature of the
outer solution. In fact the inclusion of ion inertia will nearly
always generate a fluid singularity where the flow speed is equal to
the sound speed. The singular nature of the outer solution, at just
the Bohm velocity, is then what usually justifies Bohm criterion.

We next consider another type of sheath at higher Voltage and
longer scale length, like the cathode fall of a dc discharge. Then
electrons from the plasma are virtually excluded from these regions
of the sheath acccrding to Eq.(4.15). The edge of the electron region
will be the source of nonneutral ion flux, and the current will be
purely ion current from the edge of the electron boundary to the
workpiece. Since the ion current emerges from the sheath region at
low Voltage, the ion region is a planar ion diode.

There are various possible laws for the ion diode depending on
the collisionality of the ions. If they are collisionless, the relation
betwaen Voltage, current and thickness s is given by the Child-
Langmiur space charge limited current equation -
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JLc(A/em2)=10-8(My/M)1/2V3/2(volits)/s2(cm) (10.9)

where Mg is the mass of an argon atom and the electric field as a
function of distance from the sheath edge varies as E ~ x1/3. For
instance for a kilovolt across a centimeter in an argon plasma, the
ion current is about 3x10-4A/cm2. Thus the ion diode thickness is
generally much greater than the Debye length which characterizes
the electron-ion sheath we have just discussed.

If the ions are collisional, the diode law depends on the
collision cross section a function of energy. We consider two
idealized cases. First assume the mean free path is constant. Then
the ion diode law becomes

Jy = 2.3(M/s)12J ¢ (10.10)

and E ~ x2/3, Of course this is only valid if A<s. Second, assume the
ions are collisional with a constant collision frequency v; then the
ion diode law becomes

Jy = (64/81)[(2eV/M)V/2/sv]J g (10.11)

and E ~ x1/2, This is valid only if J, < J.gc. Thus in the absence of
electrons, the collisionless ion diode represents the maximum
current that can be drawn to the cathode.

Note that none of the laws give an electric field which is
linear in x, as is usually measured. However the law for constant
ion mean free path is closest. Furthermore, for the parameters of
the discharges discussed in Section 2 and the collisionality laws
discussed in Section 3, the constant ion mean free path is a
reasonable assumption for the ions if they are governed by dominant
charge exchange process. Furthermore, the ion mean free path is
small compared to the sheath width. Thus our conclusion is that the
collisional ion diode with constant A gives the best approximation to
the cathode fall in the dc glow discharge.

However this does not completely specify the sheath. In a
plasma, the Voltage and current are not simultaneously s 2d;
only one is given, and the other is derived from the Ohm's :or the
plasma or its equivalent. Thus one additional relation is requ:-sd to
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determine the ion sheath parameters. In the next sections we will
see how this determination can be made for dc and rf discharges.

For now, we will consider the simpler case of plasma
immersed ion implantation (Plll)114.115 |n this case a workpiece is
inserted in the plasma of number density no, and is pulsed with a
large negative Voltage, a Voltage we will assume to be much greater
than T/e. Before the Voltage is turned on, the workpiece will be
bombarded with a low energy ion flux as we have just described.
Then at time t=0, a Voltage puise V(t) is imposed. Then the plasma
electrons begin to be excluded from a region of width s near the
workpiece. We will assume that s is changing with time very slowly
compared to the ion flight time across the sheath region. Then the
sheath behaves instantaneously like an ion diode. However the
current density is simply the rate that the sheath eats its way into
the plasma (The current in the sheath is displacement current). That
is

-J = noeds/dt (10.12)

where for the configuration we envision, the plasma on the left of
the workpiece, so J>0 and ds/dt<0. Equating the current to the
collisionless ion diode result, we find a single equation for s (now
interpreted as the magnitude of the sheath width) in terms of the
Voltage pulse

ds/dt = 6x1012(Ma/M)1/2v3/2(t)/- 2 (10.13)

where ngis in cm-3. From Eq.(10.13), u:.¢ can integrate and calculate
the current pulse and therefore the charge dose as a function of
energy which is embedded in the workpiece.

So far we have considered only the flux of energetic charged
particles to the workpiece, those generated in the sheath. However
in processing discharges, there are also energetic neutrals
impinging on the workpiece. The only apparent source of these
neutrals is ion charge exchange collisions in the sheath. If we
assume that the collision rate is small enough that ion collisions
are a small perturbation on the overall ion flux through the sheath,
one can calculate the flux of fast neutrals from the charge exchange
cross section cex(E) where E is the ion energy. If the ion density and
velocity at a position x in the sheath are ni(x) and v(x), then the flux
of neutrals dF, produced in region dx of the sheath is given by
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dF = nj(x)v(x)nac(E)dx (10.14)

where nj is the atom number density. The relation between ion
energy (or velocity) and position in the sheath completes the
description. Thus from a knowledge of the charge exchange cross
section and sheath parameters, one can calculate the flux of
energetic neutrals onto the workpiece for the case where it is a
small perturbation of the ion fiux.
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11. Infinite DC Discharges in Cylindrical Geometry

Let us assume that the steady state, magnetized, infinitely
long cylindrical plasma is produced by a dc current. We assume that
there is a central part, containing virtually all of the plasma volume
which is quasi-neutral. Also we will neglect electron inertia and
ion inertia in the axial and azimuthal direction. Near the wall, the
radial ion inertia is important in that it is responsible for the
singular behavior, so we will start by including it, and then show
how the problem might be simplified by approximating it away. The
quasi-neutral region is described by the number density equation for
electrons, the momentum equation for electrons and ions, and the
energy equation for electrons. As far as the ion energy goes, we
account only for the ionization energy which the ions are defined as
having.

We start with the momentum equation in the z direction
-eEz=Mmuezve (11.1)

where ve is the electron momentum exchange collision frequency
assumed to depend linearly on gas density, but otherwise is a
constant. In steady state, curl E =0, so that in the plasma, E; is
constant and cannot have any radial variation. Since the current in
the positive column is electron current one can easily calculate

| = {f/d2rn(r)}e2E/mve (11.2)

The total power input into the electron thermal energy, from Eq.(9.5)
is nmvelUez2 where ueg can be related to the electric field or total
current through Eqgs.(11.1 and 11.2). Generally we regard the total
current as the specified quantity. In terms of it, the power input per
unit length is

dP/dz = ml2ve/e2[n(r)d2r (11.3)

These then describe the Ohms law and energy input to the plasma.
We now consider the radial particle flux. We neglect all inertia
except radial ion inertia, which is responsible for the singular
nature of the quasi-neutral solution. Then the steady state density
and momentum equations become
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(1/r)d/dr(rnu;) = ajn N (11.4)
Mudu,/dr = e(E; + ujgB/c) - Muyvj (11.5)
0 = -eu;B/c - Mujgvi (11.6)
0 = -e(E; + ugeB/c) -mveu, - (1/n)d/dr(nTg) (11.7)
0 = eurB/c - muggve (11.8)

where N is the neutral density and the right hand side of Eq.(11.4) is
the ionization rate, where a; depends strongly on electron
temperature as discussed in the section on impact ionization. The
v's also depend linearly in N, but this dependence is not explicitly
shown. Also Te is the electron temperature, the only significant
temperature in our discussion.

Equations (11.5-11.8) can be reduced to the single equation for
urand n

Mu,due/dr = -{Ag+Aij}ur-(1/n)d/dr(nTg) (11.9)

Here Ag = mvg[1+Qg2/ve], with an analogous expression for Ajwhere Q
is the appropriate cyclotron frequency. This and Eq. (11.4) for n are
two of the equations for the density, radial velocity and
temperature. By solving individually for the density and velocity
derivative, one can determine that the solution becomes singular, in
that the derivatives approach infinity, when the radial velocity is
the ion sound speed.

Let us now discuss a way in which an approximate solution can
be obtained without involving the detailed singular structure of the
quasi-neutral solution. Neglecting ion inertia, we see that the ion
radial velocity is given by

ur = -[n(Ae+A()]-1d/dr(nTe) (11.10)

Notice that the velocity is determined by the magnetic field as well
as collisionality of both species. For an unmagnetized plasma
typically Ag<<Ajso the radial velocity controlled is by the ions.
However it does not take a large magnetic field to increase Ag until,
it is larger than A;, thereby making the electrons the dominant
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species in controlling the drift radial velocity. As r increases,
dn/dr increases and n decreases so the velocity will approach the
ion sound speed. The actual value of the density where this occurs
is denoted by ng.

The equation for the density then becomes
(1/r)d/dr{r[Ae+Ai]"1d/dr(nTe)} = - ai(Te)NN (11.11)

This must satisfy the boundary condition that n=ng=0 at the plasma
edge. For given temperature profile, Eq.(11.11) is a linear equation
for n, so that it does not specify the magnitude of the density, but
only specifies the relative density profile as well as an eigenvalue
insuring the boundary conditions are satisfied at both the center and
edge. Also ngis linearly proportional to no, the central density.
Since the electric field is uniform in r and the heating rate is
proportional to n, so we approximate the temperature as constant.
Hence

n(r) = nodo(xr) (11.12)

where x2 = aj(T)N[Ag+Aj)/Te. At the plasma wall r=a, the eigenvalue
is determined approximately by xa=2.4, the first zero of the Bessel
function. Thus we have determined the relative density profile and
the temperature. Notice that for a low temperature plasma, ajis a
very rapidly varying function of T. Thus large changes in things like
wall radius will have only a small effect on the temperature.

In practice, the electron temperature then turns our to be one
of the easiest quantities to predict. The electron density is much
more difficult to calculate accurately. This is particularly so
because typically secondary ionization processes and/or ionization
from nonthermal energetic electrons can be important.

It is particularly interesting that the magnetic field has little
effect on the plasma solution as well. Although the particle flux
may be greatly reduced, this is compensated for in steady state, by a
relatively small reduction of the plasma temperature. Thus we have
many characteristics of the quasi-neutral solution. At the singular
point, the quasi-neutral solution joins smoothly to sheath region as
discussed in the previous section. Since the wall is assumed to
draw no current, the wall is at the floating potential.
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The sheath solution in the previous section was derived for the
case of an unmagnetized plasma. Here we will show that as long as
wpe>>Qe, (the usual condition in processing plasmas) the sheath is
unaffected by the magnetic field. The sheath is assumed to be
collisionless, so that here, magnetic deflection of electrons must be
balanced by electron inertia. Solving the electron momentum
equation in the y direction (corresponding to the 6 direction in the
cylindrical configuration) and substituting in x, we find that the
electron momentum equation is integrable, and integrates to

1/2m(Uex2'Uex52) = '1/2m992(X'Xs)2 + e(d-9s) - T'n(n/ns) (1113)

where a subscript s denotes a quantity at the sheath edge. Since the
sheath velocity is typically ¥Te/M, the left hand side can be
neglected. If the sheath width is of order Agde, the size of the
magnetic field term is of order (Qe/mpe)2 as compared to the other
terms, so it too can be neglected. Thus for sufficiently weak
magnetic fields, the relation between density and electrostatic
potential is as in the unmagnetized case.

Now we will calculate the density by considering the one
remaining relation not yet considered, the energy balance relation.
We will discuss the qualitative features of the energy relation.
Then we will show how the swarm relations can often give a short
cut.

The energy input to the plasma per unit length is given by
Eq.(11.3). The energy losses are either through charged particles or
through other channels. We will consider first the charged particle
channel. Every charged particle flows out of the plasma and takes
its energy with it. As before, the wall is assumed to be a perfect
absorber of charged particles. With the ion flux goes the ionization
energy and the ion kinetic energy that it has when it strikes the
wall. The ion mass flux into the sheath is given by ngVTe/M. Thus
the ionization energy convected out is EingVTe/M. As the ion
convects through out the sheath, it falls through a potential
corresponding to the difference between the floating potential and
the potential at the sheath edge given in EQq.(10.8). Thus the ion
energy flux convected out is (ngVTe/M)(Te/2)[1+In(M/m)]. Next we
consider the electron energy flux out of the plasma. The energy flux




of half a Maxwellian, is 2nTe(Te/27m)1/2, As we have derived in the
previous section, the electron density at the floating potential is
(m/M)1/2 times the density at the sheath edge. Thus the surface
power convected out per unit length is

dPgs/dz=2nrng(Te/M)1/2[Ej +(Te/2)(1+In(M/m))
+ 2To(Te/2zM)1/2]  (11.14)

In addition to the surface flux out, there is a volumetric power
loss from radiation, ionization, as well as from heating the neutral
gas. This volumetric power loss is

dPy/dz = [d2r[(3m/M)venTe +nZkvkE] (11.15)

where the summation over k is the summation over all excitations.
As a rough rule of thumb, these excitations fall into three
categories which might be considered seperately. First there are
rotational and vibrational excitations. These generally heat the
background gas and we have occasionally denoted this as as an
additional energy loss {(Te)venTe. Secondly there are electronic
transitions which decay almost immediately and radiate their
energy away. We can denote this power loss as a radiated power nP;.
Finally there are excitations of long lived states (metastables)
which can be the seeds for secondary ionization processes. We can
dennote this power loss as nPy, The steady state energy lost to
ionization is accounted for in the surface loss, Eq. (11.14)

Note that the volume power loss is proportional to N while the
surface power loss is not, so there is no simple scaling with N.
However the total power loss is proportional to the electron density;
to the density at the singular surface for the surface loss; and to the
average density for the volume loss. The power input per unit length
is given by Eq.(11.3). Notice that this is proportional to the
reciprocal of the average electron density. Equating the power in to
the power out gives us an expression for the overall electron and ion
density of the plasma. We find that the electron density is
proportional to the total current |.

The swarm relations can often give a short cut. If the swarm

relations are valid, the electron energy losses are assumed to be
strictly volumetric. Take the case of the oxygen plasma, and say
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that the eigenfunction equation for the electron density gave an
eigenvalue of a temperature of 2 ev. Then from the swarm relation,
Fig. 2.1b, we see this means that E/N is about 1015 Vcm2 and the
drift velocity is w=107 cm/s. The electron density is then given by
J/lew. As we have seen, the electron temperature is not a very
strong function of the parameters (radius, current or magnetic field
for instance), so that if this is reasonably constant, varying from
perhaps 1.5-2.5 eV, then there is little variation of drift velocity.
This means that the swarm relations predict that the electron
density s nearly proportional to current, as we found from energy
relations.

Let us now recall the molecular oxygen plasma discussed in
Section 6. For the low density plasma, it was pointed out that there
was no sensible equilibrium. For instance for the Oz species, there
were only loss terms, while for electrons there were only
production terms. We see now that the other part of the issue is the
electrodynamics of the plasma itself. The loss of electrons as well
as positive ions to the walls now allows equilibria to form as we
have just calculated here. As far as the Oz is concerned, from low
density chemistry alone, there were only loss terms. However as
the O2+, O+, O and the associated electrons reach the walls of the
discharge, they recombine. We have assumed for a boundary
condition that the wall absorbs all particles impinging upon it.
However once these particles are absorbed, it is likely that, for a
totally inert wall, they recombine to the energetically favored
species, O2 in this case. Thus the wall is a source of O2 which
allows an equilibrium to form regarding this species as well.

For neutral atomic oxygen the reverse is the case, there are
volumetric production mechanisms leading to a steady state flux to
the walls where the it recombines to form O2. Thus the steady state
number density equations for Oz and O are

(1/r)d/dr(rFa) = Sa, (1/r)d/dr(rFp) = Sp (11.16)

where we have used the notation of Section 5 where a corresponds
to O2 and b corresponds to O, and F is a number density flux and S is
a source. For O2, S, is negative in the bulk, but there is a source at
the wall. so the flux is inward, and just balances the volumetric
loss. If Oz is the predominant species, then F3 = aua where a is the
equilibrium density. Thus the velocity as well as the flux can be
obtained. For O the opposite is true, and there is an outward flux to
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the wall. This atomic oxygen is of course the free radical and often
the plasma is used simply to produce it so that it can react with the
wall material and chemically affect it. In fact more realistic
models of the processing discharge would have to account for the
reactions at the wall and not simply assume that everything just
recombines to form the initial products.

Let us now see how well this theory matches up with the
experiments on magnetized and unmagnetized positive column by
Bickerton and von Engel. Their experiments were done in helium. lon
neutral collisions are dominated by charge exchange, and the
collision cross section is about 3x10-15 cm2 according to Fig.(3.4e)
Thus at room temperature, the ion thermal velocity is about 105
cm/s, so the ion collision frequency is vi(sec-1) = 2x10-10N. In
terms of the gas pressure in Torr, N(cm-3) = 2.5x1016P(Torr).
Helium has a fairly high ionization energy of about 25 eV and a
maximum cross section of about 4x10-17 cm2. Thus the ionization
rate aj, from Eq. (3.12) is given by

aj = 1.6x10'9Te1/2exp-[25/Te] (1 1 17)

where Tgis given in eV. We will first consider the unmagnetized
positive column. The simplest theory is to just use xa=2.4 so that
the density vanishes at the wall. Inserting for Aj, which is the
dominant contribution to A for the unmagnetized case, and
expressing the results in terms of pressure P, we find the
temperature relation is

Pa = 0.086 x (Te'/4) x exp(12.5/Te) (11.18)

This is plotted as curve A on Fig.(2.5a). Clearly it only agrees at the
very highest densities. One difficulty is that the actual condition is
not that the density vanishes at the wall, but (assuming the Debye
length is very small compared to the wall radius) rather that the
radial velocity at r=a is the sound speed vs. The radial velocity is
given by Eq.(11.10). Using the Bessel function model for the density,
the modified boundary condition is

vs = (kvs2/vi)[J1(xa)/Jo(xa)] (11.19)




This relation is plotted as curve B in Fig (2.5a). It shows better
agreement with the data, but it still does not agree well for small
pressure.

At small pressure, the mean ion charge exchange mean free
path becomes comparable to the wall radius. At aP = 5x10-2, they
are about equal. Instead of collisional ions, one can use a
collisionless model for the ions. To simplify the treatment, we use
a planar model rather than a cylindrical one. The ion continuity
equation is unchanged

d/dx(nv) = oinN (11.20)

but the equations for velocity and density are now directly
expressed in terms of the radial electrostatic potential

v = (-26¢/M)1/2 and n = ngexp(e¢/Te). Here the potential is defined as
zero at the center, x=0, and the density is defined as being no there.
The wall is at the position where the velocity is equal to the ion
acoustic speed, or at potential e¢/Te = 0.5. Then Eq (11.20) can be
reduced to a single nonlinear equation for { = -e¢/Te. ltis

£-1/2(1-2¢)dt/dx = Nai/(Te/2M)1/2 (11.21)

This can be integrated. Setting {= 0.5 at x=a, and using Eq.(11.17)
for aj and expressing N in terms of P, we find the relation is

6x10-3 exp (25/Te) = Pa (11.22)

This is plotted as curve C in Fig.(2.5a). This agrees much better for
small P, but does not agree as well for large P. This then illustrates
a basic dilemma in trying to explain experimental results in
discharge physics. The theory is often developed for one set of
approximations, while the experiment crosses over into several
different regimes as parameters are varied. In this case however,
where both ion inertia and diffusion are both retained, analytic
solutions have been obtained in slab geometry. In cylindrical
geometry however, one must solve the total fluid equations
numerically11é

Now let us consider the magnetized case. For the case of 440

Gauss used in the experiment, for pressures under about 1 Torr, the
transport is dominated by the magnetized electrons. Since the
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radial velocities are now much smaller than they were in the
unmagnetized case, the transport perpendicular to the field is fluid
like even when the mean free path is long. The velocity can now
become equal to the ion sound speed only if the denominator of
Eq.(11.10) nearly vanishes. Using as a condition for the temperature
xa=2.4, but where «x is reduced due to the field, we find the relation
for temperature as a function of pressure is given by the curve in Fig
(2.5b). This fits the data reasonably well in all pressure regimes.
Thus the discharge is basically fluid like perpendicular to B, even at
low collisionality.




12. Electrode Sheaths in dc Discharges

The previous section considered the infinite cylindrical
plasma. Now let us consider the boundaries at the electrodes. As
before, our assumption is that the boundaries absorb all incident
charged particles and recycle them as neutrals. The anode boundary
condition is relatively straightforward. There is an electron and ion
fiow into the anode, and its potential is determined so that the
electron current density is just J, the current density of the
discharge. This is analogous to the calculation for the cylinder wall
except that now the potential is somewhat higher than the floating
potential because the anode draws a net electron current. In terms
of J one calculates the anode potential relative to the sheath edge
and from that, the various energy fluxes. The sheath width is
several Debye lengths.

Now let us consider the cathode. By the assumed boundary
condition, the cathode does not emit particles (we will slightly
modify this condition shortly), so the only way it can draw the
appropriate current is if a flux of ions is absorbed there. However
there is an immediate problem with this scenario, if one assumes
the same type of sheath as on the anode or cylindrical wall. As the
potential is lowered, electrons are all excluded and ultimately the
cathode will draw the ion saturation current density ngeNT/M. The
problem is that the discharge current density is considerably
greater than the ion saturation current in almost all cases.

The solution is a very different type of cathode sheath, and a
much more complicated one. The actual sheath is particularly
complicated because the one dimensional sheath in x, must
transition to the glow discharge which is one dimensional in r. This
is a complicated two dimensional problem involving the singular
nature of the quasi-neutral regime and the charge separation in the
sheath. Fortunately, the qualitative features of the sheath, and the
corresponding Ohms law of the discharge can be discerned with only
a one dimensional model of the sheath. The scaling of the current
and sheath width with neutral density, as pointed out in Sec(2) was
discussed in the section on scaling. The nearly linear relation
between eleciric field and distance from the cathode was discussed
in Sec.(10) where it was pointed out that a collisional sheath with
ions having constant mean free path gave the best agreement,
although it did not give the exact power law index. We intend to
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describe here the qualitative nature of the increase of current with
Voltage in the abnormal glow regime, and also the more striking
result of the constancy of Voltage with current in the normal glow
regime. We make no attempt to give a discussion, quantitative or
otherwise of the various bright and dark spots in the cathode sheath
region.

The key is that the current is much larger than the ion
saturation current. The only way this can be is if electron current is
converted to ion current in the sheath region. This can only occur
collisionally through the ionization term in the steady state
electron and ion density equation. Thus the cathode sheath is
inherently collisional, and therefore is of much greater length than
the collisionless anode or wall sheath. The conservation equations
for electron and ion number density in steady state are

[0/0x)Je = ai(Te)NJe/ue = -[3/0x]Ji (12.1)

Thus electron and ion currents are not themselves conserved, but
ionization gives rise to coupling from one to another. The total
current is, of course conserved. However near the cathode, the
current is nearly all ion current. As one proceeds toward the
positive column, the ionization in the cathode fall converts the
current to electron current.

As the ions strike the cathode, each ion is assumed liberate y
electrons from the cathode. Typical values of y for common
electrode materials, impinging ion energy, and gases vary from about
0.1 to about 0.2. Thus the electron current near the cathode is small
compared to the ion current, but is non zero. These electrons are
accelerated in the glow, and ionization there converts this initially
small current into the dominant electron current in the positive
column.

The detailed structure of the cathode fall is complicated and
not necessarily fluid like. Therefore the fluid calculations here will
be rather approximate in nature. However, we will see that all in
all, they do not do too bad a job. We do not attempt to calculate the
detailed structure of the cathode fall, but only averaged quantities.
Therefore we will deal with approximate integrals of the equations
only. The first relation is of course the ion diode relation for the
collisional ion diode with constant mean free path




Ja(A/cm)=2.3x10-8(AM 3/M)1/2V3/2(yolts)/s5/2(cm) (12.2)

However as we pointed out earlier, this is not sufficient to specify
the current as a function of Voitage because it involves a still
unknown parameter, the sheath width s. The other relation is the
ionization balance which converts the ion to electron current.
Notice that the first equation in Eq.(12.1) predicts very nearly
exponential increase of the current with distance. For y's of about
0.15, it will take about 2 e foldings until the current is converted to
electron current. Thus another relation between the cathode fall
width s and the ionization is

s = 2ug/Nai(Te) (12.3)

The expression for aj(Te) is given in for instance Eq.(7.19), as one
might expect for a gas with constant collision cross section, or a
Ramsauer gas with temperature not much below the maximum cross
section. For oxygen, we take the maximum cross section as cq =
2x10-16 cm2 and the ionization energy Ej = 12 eV.

However the temperature and the drift velocities are now
themselves functions of electric field. We use the empirical results
presented in Sec.(2), which, as we have seen, agree reasonably well
with theory.

Te(eV) = A[(V/Ns)/10-14 vcm?2)0.5 (12.4)
and

ue(cm/s) = B[(V/Ns)/10-14 Vcm?2]0.7 (12.5)
where for oxygen, A = 8 eV and B = 6x107cm/s and also the
ionization potential Ei=12 eV. In Eqgs.(12.4 and 5), instead of writing
the electric field on the right hand side, we used voltage divided by
sheath width.

Now write the expressions for aj, ug, and Te, as functions of
V/s, and Eq.(12.3) becomes

V = 1.1x102Q0-45exp-[9/16Q] (12.6)




where Q = 1014V/Ns. Equation (12.6) above, and the ion diode
relation, EQ.(12.2) are two equations relating the Voltage V, current
density J and sheath width s. Let us first examine EQ.(12.6) which
involves only V and Q. As Q approaches both zero and infinity, the
right hand side approaches infinity. Thus there are two possible
solutions to V from EQ.(12.6). The physical solution is the one that
has voltage increasing as diode width s decreases, as this is
consistent with the diode relation.

Let us now envision the solution to EqQ.(12.6) at high Voltage.
It gives a relation between V and s. Inserting this solution for s
into Eq.(12.2), gives us J in terms of V. It predicts a rapidly
increasing J as V increases, both because J increases rapidly with V
according to the diode relation, and also because d decreases with V,
and J is an even more rapidly increasing function of s-1. This is the
abnormal glow mode, where J increases with V. At some maximum
current density, the heating of the cathode will get so great that one
transitions to the arc mode. However let us envision starting in the
abnormal glow mode and decreasing the Voltage. The current density
then decreases. However this cannot be done indefinitely. The right
hand side of Eq.(12.6) has a minimum, and the Voltage cannot be
lowered to less than this value. For the parameters given, this
minimum voltage is about 190 Volts. When the Voltage is lower,
there is no solution to Eq.(12.6). Furthermore, at the particular
value of N, the current density also reaches a certain minimum
value. (Recall however that J scales as N2, but Voltage is
independent of N.) However while the Voltage and current density
cannot be lowered, the total current, controlled by the external
circuit can be lowered. The discharge can lower its total current
simply by reducing the cathode area which draws current. This then
is normal glow mode; constant Voltage and current density, but
emitting area on the cathode proportional to total current. The
predicted Voltage, 190 Volts for an oxygen plasma, is also
reasonably close to that measured. For instance von Engel, p 229
gives the result that the cathode fall potential for an oxygen plasma
with an iron electrode is 290 Volts. Thus the simple theory gives
good qualitative agreement. From the value of Q at the minimum and
also from the Voltage, we find that the value of the distance is
given by sN = 1.5x1016, or in terms of the pressure in Torr,

sP (cm torr) = 0.6 (12.7)

The actual value is about 0.31, according to von Engel (1956) p 230
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for an oxygen plasma with an iron cathode. This is also in
reasonable qualitative agreement with theory. Other exponents in
the temperature relation give qualitatively similar results. A
Maxwellian distribution instead of a Druyvesteyn gives somewhat
worse agreement for sP. The current density does not agree as well
however. The fact that the voltage is a too small by about a factor
of 30% and the gap width s is too large by about a factor of 2, means
that the current as given by the ion diode relation is too small by
almost an order of magnitude if one uses the collisional ion diode
relation. The reason is that the current scales as these parameters
to fairly high powers. However if one uses the actual experimental
values for the voltage and sP, the current is reasonably well
predicted by the ion diode relation. Thus simple theory gives
reasonable values for V and sP; it also confirms the ion diode
relations if actual values are used. This is an example of the fact
that, as Hitcheon pointed out40, even if a simple analytic theory gets
some parameters right, it has a hard time getting everything,
because the parametric dependences can involve power laws with
fairly high powers.

The fact that the predicted value of sP is too large means that
the ionization rate used here is too low. In the actual system it may
be larger for several reasons. First of all, there may be a small
population of energetic electrons from the direct acceleration of a
few non-colliding electrons in the cathode fall potential. However,
different Monte-Carlo simulations do not always agree as we will
see. Secondly, the large sink of electron energy from exciting
rotational and vibrational states may fill up if the gas heats up. |f
the neutral gas in the cathode fall heats up, the {'s may be smaller,

the electrons hotter, and the aj's larger.

Finally it is :nteresting that the qualitative theory of the
constant voltage ..t for the normal glow, like that presented here,
was given in von L .gel and Steenbeck's criginal book, but there
appears to be no modern rederivation or a.scussion of it.

To get better quantitative agreement, Monte Carlo simulations
are often used. By integrating a random set of colliding test
particles from the cathode, a distribution function at the plasma
edge of a steady state cathode fall can be generated. It is
interesting that the techniques developed, while particle in nature
are not particle in cell simulations and are inherently steady state.




The earliest Monte Carlo simulations used fixed fields to calculate
the electron distribution function30. Self consistent calculations
then were done by iterating over a series of fixed field calculations
of both electrons and ions82.117 ,118  Sometimes these calculations
show nonthermal electrons, and sometimes they do not.
Furthermore, these calculations so far have apparently been done
only for rare gases. Even here, perhaps only half a dozen excited
states are used. Generally these papers do not comment on the
dilemma, discussed in Sec 5 of what maximum value to take for the
excited state energy. Published Monte-Carlo calculations do not
seem to have been done for molecular gases, and these would of
course be much more complicated to do. Even in the rare gases
however, a large number of atomic and collisional processes have to
be taken into account to give good agreement with experiments.
Even where the agreement is good, the constant Voltage nature of
the normal glow and the shrinkage of the plasma covered part of the
cathode with decreasing current is not discussed because of the one
dimensional nature of the simulations.

Other models approximate the streaming plasma as a single
beam119 or series of beams. As we have seen, for oxygen, at 1 torr,
the sheath width is about 0.3 cm. The electron momentum exchange
collision cross section, up to about 100 ev, is about 10-15 cm2, so
that the sheath is about 10 mean free paths across. However above
100 ev, the momentum exchange cross section begins to decrease
and is down by at least an order of magnitude at about a kilovolt.
Thus of the electrons which can free stream about 5 mean free
paths, a fraction of about e-5, or something under 1% of them, many
of them will be freely accelerated the rest of the way across the
sheath. Thus we would also typically expect that something above
0.1% of the electrons would be freely accelerated across the sheath
and form a beam at the cathode sheath potential. As this beam
itself causes ionization, secondaries would be produced, and parts of
the beam would also be at energies less than the full sheath
potential. Clearly the basic properties of the sheath are very
complicated and not strictly fluid like. However a fluid formulation
does reproduce many of the qualitative features.

Finally the Ohm’s law for the plasma is given entirely in terms
of the sheath because in most cases, the Voltage across the positive
column is much less than that across the sheath. For example, take
a 0.1 torr plasma. If E/N is 10-15 Vem2, then this corresponds to a
voltage drop of only 3 V/icm. It would be a fairly long plasma before




the voltage drop across the positive column would equal the 300 or
so volts across the cathode sheath.




13. RF Discharges in Planar Geometry

In processing discharges, power at an rf frequency f= w/2=,
typically 13 Mhz, is often used instead of dc power. For the dc
discharge, the cathode sheath was inherently collisional. In the case
of the rf plasma, the sheath may be collisionless, and it is the
presence of the oscillating current that allows this. The fact that
the sheath can be collisionless would appear to allow for rf
discharges at neutral pressures less than the minimum required for
dc discharges. (In fact Godyak ran at a minimum pressure of 0.003
Torr with a discharge length of 6.7 cm where dc discharge sheath
could not form.) Furthermore, we have seen that dc sheaths need a
minimum voltage to exist, while rf sheaths can exist below this
voltage. Also, as we have mentioned, since the current to the
workpiece can be displacement current rather than conduction
current, the electrode does not necessarily have to be a conductor.
Thus rf driven plasmas have considerably more flexibility than dc
discharges, and find more use in industrial processing.

To model the rf discharges in planar geometry, we assume that
in the central, quasi-neutral region, each fluid quantity has an
average value, and a value oscillating at the rf drive frequency. The
idea then is to write the fluid equations as two separate sets of
fluid equations, one for the dc quantities, and one for the quantities
oscillating at frequency w. Since the equations are nonlinear, there
will be coupling from one set to the other.

We denote the rf quantities with an underline, and generally
we assume that these are small compared to the dc quantities, so
that a perturbation theory can be applied. This central quasi-neutral
region then attaches itself to a sheath near the boundary. This
sheath is not neutral, and furthermore, the separation of the rf and
dc components becomes rather complicated there.

The rf momentum equation for the central quasi-neutral part
then becomes

Ue = eE/m(-iv+ve) = -J/ne (13.1)
which is also the rf Ohm's law for this portion of the plasma. In

applying Ohm's law, it is necessary to keep in mind that J has no x
dependence due to quasi-neutrality, while the x dependence of E is
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as specified by Eq.(13.1), that is for constant ve, £ is proportional to
the reciprocal of the density. Thus E increases near the edge of the
plasma where the density decreases, so that we expect the
temperature to be larger near the plasma edges. This is in contrast
to the dc cylindrical case where E was constant as a function of
radius so that the temperature was also.

We now consider the dc part of the momentum and density
equations. Recall that in the dc case for the radial dependence, the
temperature equation decoupled. The momentum and density
equation gave the temperature which was constant as a function of
radius, and the relative density profile. In the rf discharge case, the
decoupling is not complete because the temperature is now a
function of x. We will proceed by approximating the temperature as
constant and then discuss qualitatively the effect of non constant
temperature. If the temperature is constant, a; is also, and just as
in the cylindrical case, one solves for the relative density profile
subject to the boundary condition that the velocity is the sound
speed at the plasma boundary. The boundary condition determines
the eigenvalue aj, which in turn determines the temperature, just as
for the radial configuration dc flow discharge. Thus the relative
density profile and average temperature is determined by the
momentum and density equation.

Now let us discuss the effect of a temperature profile in x. As
we have seen the electron heating is larger near the electrodes, so
the temperature will be larger there also. The actual temperature
profile will depend on the thermal conductivity among other things.
However, o will be an increasing function of x as one approaches the
electrode. This causes the density profile to be broader in the
center and more rapidly decreasing near the edges. If we regard the
spatial profile of o as being specified up to an overall coefficient,
the eigenvalue is then that coefficient, or an average temperature.
Thus the average temperature depends on the geometry alone and not
on the current. This is consistent with Godyak's probe
measurements shown in Fig.(2.7), which show the average
temperature in the argon rf discharge as independent of current at
low current, that is until one reaches the y regime, which we will
discuss shortly.

Let us digress briefly to review the parameters of Godyak's
experiment. From our plots of ion charge exchange cross section,
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the charge exchange mean free path length in centimeters is given
roughly by 1/100P(Torr). The electron collision frequency, in sec!
at 10 eV is given by 5x10°P, and at 1 eV is given by 2x108P. Thus
for our example of a pressure of 0.3 Torr, w/vp < 1 for both electron
energies, so the electrons are collisional. Also, the ion mean free
path is considerably less that the sheath width, so the sheaths near
the electrodes are collisional also.

Godyak describes three physics regimes of the discharge. At
low current and high neutral density, the bulk heating of the
electrons is mostly conventional Ohmic heating. At low neutral
density, stochastic heating is dominant. This is the heating the
electrons encounter by refiecting from the oscillating sheaths. In
all cases a dc sheath also forms at each electrode. At low rf current
(the dc current is zero even though there are dc fields), the dc
sheath Voltage is less than Vg, that required for a dc cathode fall
like that was described in the previous section. As the rf current
increases, the dc sheath Voltage becomes comparable to V¢ and
emission from the cathode becomes important. This is the y regime.

We now turn to the dc electron temperature equation. There is
a power input from the Ohmic heating. If J=-Josinwt then the
average power input into the central region of the neutral plasmas is

dPon/dz =0.5AmvpJdo2/ne? (13.2)

where A is the area of the plasma. The fact that the power input
goes as n-! is due to the concentration of rf electric fields in the
low density region which we have discussed. Also we have assumed
no dc current, so there is no power input from dc fields. Now let us
consider the sheath region. The total power into the sheath region
will be denoted Ps and this depends on the sheath physics, which we
will discuss shortly. An additional power input is the stochastic
heating of the electrons Psi. This is the energy the electrons pick up
as the reflect from the oscillating sheath. We will also discuss this
power input later. However for the regime where the electrons are
moderately collisional, it is small.

Now let us turn to the power dissipated by the plasma. First,
and simplest, we consider the sheath. We assume that all of the
power put into the sheath is dissipated there also. This dissipation
may be in the form of either fast ions or neutrals streaming into the

92




electrode, or else heating of the gas in the sheath region. In any
case, we assume that the power Pg is locally dissipated there. To
continue, turn to the power dissipation in the central region of the
plasma. The electrons there gain energy from the ohmic heating, and
lose it to heating of the neutral gas and also to radiation and
ionization. The power loss per unit length from these two
mechanisms is

dP/dz = A[{(T)Tvp + Pr + EjaiN]n (13.3)

where [ relates momentum and temperature equilibration collision
rates, and P; is the power radiated per electron as per the
discussion after Eq. (11.15). In addition to the volumetric power
loses, there is also the energy convected into the sheath. Assuming
that the ionization energy is much greater than the electron
temperature, as we have typically done here, this is given by

Pc = ngAEi[Te/M]1/2 (13.4)

where in our convention, the ionization energy is carried by the ion.
Also, ng is the electron density at the sheath edge, the point where
the ion velocity is [Te/M]1/2,

Thus the power balance equation is
fdz (dPon/dz) = Jdz(dPL/dz) + Pe (13.5)

where we have canceled Pg from each side and assumed Pg; is small,.
which Godyak finds to be true for the more coliisional plasma. Now
recall that in our approximation of fixed temperature profile (or
constant temperature), the relative density profile was obtained
with the density and momentum equations. Thus the density profiie
will be denoted ngf(x) where f is some known function and f(x=0)=1.
Then the left hand side of EqQ.(13.5) scales as ng-! and the right as ng,
SO

No = %Jo (13.6)
Thus the electron density scales linearly with the rf current. Thts

is consistent with Godyak's probe data shown in Fig.(2.7a). At high
current, the discharge is in the y mode and secondary electrons
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emitted from the electrodes play an important role and the density
appears to increase more rapidly with current. However in the
regime of low current and of a reasonably collisional plasma, the
theoretical results of temperature independent of current (i.e
scaling only with geometry) and density linear with current are
borne out by the experimental data. While the density scales
linearly with the rf current, its scaling with neutral density is not
necessarily simple because dP_/dz and dPoH/dz scale with N (the
neutral number density), but P¢is independent of N.

As we saw in the previous sections, dc ion sheaths either
involve Voltage drops of a few times the electron temperature and
had a Debye length scale; or else, if the ion current is larger than the
ion saturation current, is inherently collisional and had a much
longer length scale. However the time dependent nature of the rf
sheath allows additional flexibility in the nature of the sheath. It is
somewhat analogous to Plll (Plasma Imersed lon Implantation)
except the time dependence is now oscillatory.

We make the approximation that the rf frequency is much
greater than the ion plasma frequency, so that the ions, even in the
sheath do not respond to the rf fields, but react only to the dc fields
set up. (Recall that the boundary condition is that there is no dc
current; however as we will see, there are still large dc electric
fields in the sheath.) The frequency is low enough that the electrons
respond to the instantaneous fields. We assume further, that the dc
potential drop across the sheath is very large compared to the
electron temperature.

We begin by considering the collisionless sheath. Let us say
that the singular point of the quasi-neutral solution is at x=0 and
¢=0, and the wall is at x=sm at which point, there is a large negative
dc potential. The actual time dependent potential between x=0 and
X=Sm is complicated due to the fact that the electrons oscillate back
and forth between these positions. As the electrons oscillate
between x=0 and sm, the position at which ¢=0 moves back and forth.
If the oscillating and dc potentials are large compared to T/e, as in
fact we assume, the electron density is equal to the ion density to
the left of the position where the instantaneous potential is zero,
and is zero to the right. Thus the picture of the sheath is that of an
electron density whose edge oscillates between O<x<sm as the
current oscillates through a cycle. The position of the sheath is at




the instantaneous place where ¢=0. However, one can also define a
potential averaged over an rf period; this is the potential that the
ions respond to. If there were no electrons at all present in the
sheath, the current, voltage and sheath width sm would be related by
the collisionless ion diode Langmuir-Child's law, Eq.(10.9). Because
there are electrons in the diode region, the ion current is actually
somewhat greater than this. However this does not specify the
problem, because the specified quantities are Jo, ng, T and the
incident ion flow speed ug=V(T/M), the first of which is specified, the
others all come from the outer, quasi-neutral solution. Thus the dc
ion current density is specified by the quasi-neutral solution, but
not the Voltage or gap spacing. Furthermore, since there is no dc
current, this ion current must be cancelled by an equal and opposite
dc electron current.

The actual solution for the collisionless rf sheath was derived
by Lieberman by breaking the equations up into a time averaged
potential which the ions respond to, and an exact part which the
electrons respond to. We will not go through the nonlinear analysis
here, but will give a very simple, but approximate solution which
demonstrates the basic physics and scaling calculated by Lieberman.
If the position of the sheath edge is denoted by s, then

Josinwt = neds/dt (13.7)

as in Eq.(10.13). At t=0, ds/dt=0 and d2s/dt2>0, so the sheath is at
plasma edge, the minimum value of s. Similarly, at t=n/0, the
sheath is at the maximum position, s=s;. In terms of the dc
potential, the ion density as a function of ¢ is given by n = ng(1-
2e¢/T)-1/2 agsuming uj =ug at $=0. Inserting this value of n into
Eq.(13.7), and assuming that the potential is large compared to the
temperature, e find that an approximate relation between sy and
om is

Sm = (edm/T)1/2Jo/nsew (13.8)
which serves as one relation between potential drop, sheath width
and plasma parameters. The other relation is simply the ion diode
relation, EQ.(10.9). These two relations then specify the scaling

laws for the sheath in terms of the oscillating current and the
plasma parameters at the singular point of the quasi-neutral
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solution. The actual solutions that Lieberman finds from solving the
nonlinear equations specifying the rf sheath are

Ji=1.8JL¢c (13.9)

where Ji=nse(Te/M)1/2, and Jic is the current of the ion diode given
by Eq.(10.9) but with diode Voltage given by ¢m, and gap by sm, and

sm = (e¢/1.6T)V/2)y/ngew (13.10)

Except for numerical factors of order unity, Lieberman's solution is
equivalent to the approximated one we have derived here. This then
allows us to calculate both the ion energy striking the surface.
From Eqs.(13.9 and 10), the Voltage drop across the sheath is given
by

om(V)=0.6Jo4(mA/cm2)/{T(eV)[ns(cm-3)/1010]2[f/13MHz]4} (13.11)

Since n is typically proportional to Jo, as specified by the quasi-
neutral solution, the dependence of ¢ on Jo is not as rapid as it
appears in Eq.(13.11). In fact assuming that ng scales linearly with
Jo we find

Om < Jo2/f4 Smee Jo/f3 (13.12)

This is still a rapid scaling with J, and as the current is increased in
a regime where the sheath is collisionless, one would expect that
power dissipation in the sheath would begin to exceed the power
dissipation in the plasma. We will discuss this more fully shortly.

We have calculated the dc ion current in terms of the plasma
and circuit parameters. In order to insure that there is no net dc
current, the dc ion current must be balanced an opposite dc electron
current. Note that at time t=n/w, the electron sheath is in contact
with the wall. Aithough the time of contact is short, the electron
current to the wall during this time can be large because the
electron thermal velocity is so much larger than the ion streaming
velocity. Thus dc current is preserved at its zero value by the
electrode drawing the necessary electron current for the time that
the electron sheath is in contact with the electrode.




At time n/w, the actual Voltage across the sheath is equal to
the dc potential ¢m. Also, J is an odd function of time, and V is an

even function of time, so the sheath is capacitive. If we define a
sheath capacitance by

-Adosinwt = CsdV/dt (13.13)

where A is the area of the electrode, and if V is approximated as
¢m(1+coswt)/2, we can obtain the sheath capacitance, roughly equal
to A/sm, in terms of the plasma parameters.

In addition to the capacitive nature of the sheath, there is also
a resistive part due to the fact that an individual electron incident
on the sheath with velocity vx bounces off with velocity vx+2ds/dt,
where ds/dt is the velocity of the sheath. However the time for the
electron to bounce off the oscillating sheath must be small
compared to the collision time. Thus this is a more important
heating mechanism for low pressure discharges. In calculating the
energy flux bouncing off the sheath, we will only consider even
powers of ds/dt since these are the portions that will not average to
zero over an oscillation period. If we approximate the time average
value of (ds/dt)2 to be 0.5w2sn2, we find that the additional power
input into the plasma is

Pos = 3Ang[edm/T]- 12mw2sm2(T/2nm)1/2 (13.14)

where in estimating the power input, we have assumed the average
density of the sheath is ng/(e¢m/T)1/2 to account for the density
raduction as the ions accelerate through the sheath. This is the
density reduction characteristic of a collisionless sheath. This
gives rise to a resistive part of the sheath response. Often this
heating is called stochastic heating, since it is not related to
plasma collis:: nality. This power input into the plasma must be
added to the bulk resistive power input when calculating the energy
balance. Notice however that this power comes in as :n energy flux
near each electrode. If the stochastic heating is expressed in terms
of Jo, ns and o only, the result is that the power input scales as
Jo4/n52(02.

Let us now briefly consider the very low pressure case, where

stochastic heating dominates Ohmic heating. Energy is put in at the
edges, but since the electron mean free path is long, the thermal
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conduction is high and the temperature profile should once again be
reasonably uniform along the length of the discharge. Thus the
density profile should have the normal shape, rounded in the middle
and not particularly sharp at the edges. Balancing stochastic
heating input power with the output power, the result is that the
electron density scales as Jo4/3.

We now consider the collisional sheath129 for the case in
which the ion mean free path is a constant A. As we have seen this
is a reasonable approximation for both argon and helium; the mean
free path has some variation with energy, but the collision
frequency has a greater variation with energy. Equation (13.7) still
relates the current to the oscillating boundary. Within the sheath,
we still have n=ng(T/M)1/2/v, but now v= [epA/Ms]1/2 for collisional
ions with constant mean free path A. Then we find the scaling law

¢m oc 11/2J°5/2/f5/2nsT1/2 (1315)

Making the assumption that T is determined by the geometry and ng
is proportional to Jo, as determined by the external quasi-neutral
solution, we find the scaling:

om o< }\'1/2J°3/2/f5/2 and Sm = 11/2J°1/2/f3/2 (13.16)

To continue, we calculate the power dissipated by the plasma
in the collisional regime. Using our scaling that n<Jo, the Ohmic
power dissipation scales linearly in Jo. The sheath power on the
other hand, scales as ¢m times the dc ion current. The dc ion current
is simply ngA(Te/M)1/2, which scales as Jo, since ng scales as Jo and
Te is independent of Jo. Thus the sheath power input scales as Jo5/2.
Hence if an rf discharge in the collisional regime is run at constant
pressure, but the current increases, at low current the power input
scales as Jo. As the current increases, the sheath power begins to
dominate because it scales as a higher power of Jo. Thus at some
current, the scaling will switch to a J5/2 law. These are just the
sorts of scaling laws that Godyak typically found. Figure (2.7b) here
shows some of this data, where the scaling law of power with
current is linear with current for low current, but switches to a 5/2
power law at higher current. In the collisional regime at high
current, only a small part of the power is dissipated as fast ions
striking the electrode. The ion energy of an ion striking the
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electrode is typically ¢m(A/sm)1/2. The remaining energy is
dissipated either as fast neutrals striking the electrode or else as
heating of the gas in the sheath region.

Now consider the collisionless regime. Using the scalings for
¢, Sm, and ng in terms of Jo, we find that if the stochastic heating is
dominant, Psie Jo4/3. At higher input power, the dissipation due to
ions in the sheath scales as Jo83. Thus at higher current, the sheath
power dominates. Shown in Fig.(2.7¢) is Godyak's data for his lowest
pressure, P= 0.003 Torr, where the plasma is collisionless. The
straight lines sketched in have slopes 4/3 and 8/3. Again there is
reasonable agreement.

Now let us consider the rf response of a symmetric planar
discharge. There are two equivalent sheaths on the two equal area
electrodes. The rf current is the same through out the plasma. Thus
while the sheath is moving towards one electrode, it is moving away
from the other. For instance, while the sheath is in contact with the
right hand electrode, and the voltage drop to the plasma zero; the
sheath has maximum separation from the left electrode and the
voltage drop is at its maximum value, the full dc voltage drop. I[f the
voltage drop across the sheath on the right is denoted V(t), then the
Voltage on the left hand sheath is given by Vi(t)=V(t-r/w), so the
total voltage drop across the plasma (assuming the sheath Voltage
drops dominate) as a function of time is V((t)-V(t-n/w).

To conclude, we briefly discuss the case of an asymmetric
discharge for which the areas of the two electrodes are not equal.
The total rf current through the electrodes must be equal to one
another. Thus JoA is constant for each electrode. Then, according to
Eq.(13.11), the potential drop across a collisionless sheath at an
electrode of area A scales as A-4, as long as the electron densities
and temperatures are equal at each sheath. On the other hand, the
potential drop in the collisional regime scales as A-5/2. This rapid
variation with area is typically not observed in experiments. One
reason is that the densities are not the same at each electrode. This
has been examined by Lieberman'2!, and depending on what the
collisional law is (ie constant collision frequency, constant mean
free path etc), there are different area scalings of Voltage. The
collisionless, uniform density case has the most rapid scaling with
electrode area. Also there are geometric factors. One would expect
the density to be larger at the smaller electrode because the current
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density is higher there. If the density is taken to scale as the local
current density, the collisional sheath would give a scaling of
odm=A-3/2 which is closer to what is observed experimentally.
Lieberman has investigated this, within the framework of a one
dimensional model, by using cylindrical or spherical coordinates.

Summarizing, we have discussed a variety of theories of rf
discharges and compared them with recent data. At least some of
the features of the data can be explained with the theories reviewed
and developed here.
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Figure Captions:

1.1 a) The number of components on a circuit as a function of
year, b) The design rules for integrated circuit manufacture.

1.2 a) A trench 0.2 microns wide by 4 microns deep in crystaline
silicon. Only with plasmas can such features be fabricated
economically. b) A schematic of the characteristics of anisotropic
plasma and isotropic wet etches.

2.1 a) Swarm data for momentum an energy trnasfer collision
frequency in oxygen. b) Data for drift velocity and characteristic
energy (temperature) as a function of E/N.

2.2 Elastic (dashed) and total excitation (solid) cross section as a
function of energy for electron collisions with O2, N2, and O.

2.3 The various regimes of a dc glow discharge.
2.4 1939 Photo of the qualitative structure of a dc glow discharge.

2.5 a) Electron temperature as a function of radius times pressure
for the positive column in an unmagnetized helium discharge. The
lines are various theoretical results. b) The temperature as a
function of pressure for a positive column in a magnetic field of 440
Gauss. The curve is a theoretical result.

26 1932 data showing a) the current as a function of emitting
area of the cathode, and b) the electric field as a function of
distance from the cathode, both for a dc discharge.

2.7 a) Data for density and temperature as a function of current
density in an argon rf discharge. b) Data for power as a function of
current for the same discharge. The lines drawn are various
theoretical scaling laws. The pressure is 0.3 Torr.

2.8 Input power as a function of current for an argon rf discharge
at very low density (P=0.003 Torr). The lines are theoretical scaling
laws.

3.1 Electron momentum exchange collision frequency in a) helium,
and b) argon as a function of energy.
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3.2 a) The momentum exchange collision cross section, the
ionization cross section, and various electronic excitation cross
sections for oxygen as a function of energy. b) Cross sections for
vibrational excitations for oxygen.

3,3 a) lonization cross sections as a function of energy for a
variety of gases. b) Dissociative recombination cross section as a
function of energy for typical diatomic gases.

3.4 a) Dissociative attachment coefficient for oxygen as a
functionof energy. The area unit is 0.88 square angstroms. Charge
exchange cross sections as a function of energy in a variety of gases
for b) nitrogen and ¢) oxygen. d) Charge exchange cross section for
N2+ in N2 at much lower energy. Charge exchange cross sections for
e) helium and f) argon.

4.1 a) The forward collision. b) The time reversed collision. c)
the time reversed collision reflected in a plane perpendicular to the
velocity of particle b.

7.1 a) Data for distribution functions in an rf discharge for a)
helium and b) argon.

7.2 The distribution function calculated for nitrogen from Ref.(110)

showing the drop in f as one crosses the vibrational excitation
barrier.
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